1) elementary unitary matrix
初等酉矩阵
2) elementary matrix
初等矩阵
1.
The brief proof is given for "row elementary operations keep the linear relationship of column vectors of matrix",by using multiplication of partitioned matrix and the relation between elementary matrix and elementary operation.
利用初等矩阵与初等变换的对应关系及分块矩阵的乘法,给出矩阵的行初等变换不改变其列向量组的线性关系"的一个简易证明。
2.
This paper analyzes the essence of method of completing suqare with matrix,utilizing the relationship between the elementary matrix and the elementary transformation.
二次型化标准形常采用配方法,而二次型化标准形等价于它的矩阵合同对角化,文中利用初等矩阵和初等变换之间的关系。
3.
From this point of view,we can concisely and intuitively introduce the multiplication principles of elementary matrix and block matrix.
用变量的线性替换解释矩阵乘法,由此可以简洁而且直观地导出初等矩阵和分块矩阵的乘法原理。
4) elementary λ-matrix
初等λ-矩阵
5) sub elementary
次初等矩阵
1.
It also riches the qualities of elementary and definites sub elementary from flick matrix.
给出了初等矩阵的几个新的性质,初等矩阵与它的转置矩阵,伴随矩阵,幂矩阵之间的关系,丰富了初等矩阵的性质,同时给出了次初等矩阵的概念以及初等矩阵与次初等矩阵的关系定理等一系列结果。
6) unitary matrix
酉矩阵
1.
The application of unitary matrix in monitoring phased array antennas
酉矩阵在相控阵天线监测中的应用
2.
The properties of the unitary matrix for the localization of molecular orbitals were discussed.
讨论了分子轨道定域化酉矩阵的性质,揭示了其物理意义和统计性质。
3.
The key of this method is to spread a perfect sequence by correlation product of the shift sequences set of the perfect sequence and corresponding unitary matrix.
提出了一种由一个完备序列的移位序列集和酉矩阵构造零相关区序列集的方法。
补充资料:初等矩阵
初等矩阵是指,由单位矩阵经过三种矩阵初等变换得到的矩阵。
(1)交换矩阵中某两行(列)的位置;
(2)用一个非零常熟乘以矩阵的某一行;
(3)将矩阵的某一行(列)乘以常数k后加到另一行上去。
三类初等矩阵都是可逆矩阵,即非异阵。
三类初等矩阵的值是:
(1):-1
(2):k
(3):1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条