1) inconsistent knowledge
不一致知识
2) MUPS
最小不一致知识子集
1.
For the second one, the approach for identifying Minimal Unsatisfiability-preserving Sub-TBoxes (MUPS) based on discrimination rules is proposed to ensure correct construction.
对于问题二,本文提出了基于判别规则识别本体中不满足概念的最小不一致知识子集(MinimalUnsatisfiability-preserving Sub-TBoxes,MUPS)以确保本体正确构建。
4) consistency of knowledge base
知识库一致性
5) Knowledge Consistency Analysis
知识一致性分析
6) identifier inconsistency
标识符不一致性
补充资料:Weierstrass准则(关于一致收敛的)
Weierstrass准则(关于一致收敛的)
erion (for unifonn convergence) Weierstrass cri-
weierstrass准则(关于一致收敛的)[Weierstrass eri-teri佣(for.丽肠价ne哪ergence);Be益eP扭TPaeea nP。-3“aIC(pa“IloMepHO盛cxo八IIMOCTH)] 这是将函数级数(series)或序列与适当的数值级数和序列对照所给出的关于一致收敛(训如rm conver-genee)充分条件的一个定理;它是K .Weierstrass建立的(〔11).若对定义在某集合E上的实值或复值函数的级数 艺u*(x), n盈I存在非负数的收敛级数 艺a。,使得 }“。(x){(a。,n=l,2,·…则原来级数在集合E中一致收敛且绝对收敛(见绝对收敛级数(absolutelyc~r罗nt series).例如,级数 军,S】n月X 月百j刀-在整个实数轴上一致且绝对收敛,因为 }sin nx}_1 }竺兰兰二二二}或一二一. }n一!”-而级数 瘩:告收敛. 若集合E上的实值或复值函数序列人(n二l,2,…)收敛于函数f,且存在数列戊。(:,>0),当”~的时:。~0,使得If(x)一f。(x)}簇戊。(x〔E,n二1,2,一),则序列在E上一致收敛.例如序列 f(二卜l一上卫兰 X‘+n在整个实数轴上一致收敛于函数f(x)=1,因为 ,,一f。(x)、<告且浊寺一。.关于一致收敛的Weierstrass准则也可以应用于在赋范线性空间中取值的函数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条