说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 倍频混频电路
1)  frequency multiplier mixer circuit
倍频混频电路
2)  frequency doubling circuit
倍频电路
3)  frequency multiplier circuit
倍频电路;频率倍增电路
4)  quadruplicated frequency circuit
四倍频电路
5)  mixer circuit
混频电路
1.
The principles of diode loop mixer circuit are discussed.
探讨了二极管环形混频电路的工作原理,通过分析和计算,得出最终输出电流的组合频率分量。
6)  SHG and THG
倍频和混频
1.
The permitted parameters curves of SHG and THG by using numerical simulation were obtained, which is on the momentum and energy conversion laws of the coupling wave, and Sellmeier equations of the CLBO in the type-II phase matching.
根据波耦合中的能量动量守恒和色散方程 ,数值模拟计算了CsLiB6 O10 晶体在II类相位匹配下的倍频和混频产生的允许参量理论曲线 通过与 β BaB2 O4 晶体的比较 ,得到了CsLiB6 O10晶体的谐波具有走离角小、允许参量范围宽的结
补充资料:动态电路复频域分析


动态电路复频域分析
complex frequency-domain analysis of dynamic circuits

  dongto}dlonlu卞uP一ny日fenx{动态电路复频域分析(eomplex frequeney-domain analysisof dynamie eireuits)用拉普拉斯变换方法分析动态电路。作为数学工具,拉普拉斯变换是一种积分变换,常用以求线性常系数微分方程和偏微分方程的解。线性非时变集总参数动态电路是用常系数线性常微分方程描述的,线性非时变分布参数电路是由相应的偏微分方程描述的。因而,对于这些电路可借助拉普拉斯变换方法进行分析。 拉普拉斯变换的定义拉普拉斯变换方法简称拉氏变换方法。拉氏变换可分为单边拉氏变换和双边拉氏变换。此处只介绍单边拉氏变换的定义。 设时间t的函数f(t),当t。。时,上式的积分收敛,则f(t)的拉氏变换存在。使以上关系成立的最小的。。值称为收敛坐标。F(s)也称为f(约的象函数,而f(t)称为F(,)的原函数。给定一原函数f(t),可由定义式求其象函数;反之,由一象函数F(:)可按下式求其原函数f(t)、一二(5)〕一、(才)一瑞{:‘:二F‘了)一d‘,·>一 根据拉氏变换的定义式,可以求出不同的原函数f(t)的象函数F(s)。许多数学手册上都载有f(t)和F(、)对应关系的表以供查阅。表中所给出的是常用函数的拉氏变换关系。 常用函数的拉氏变换表┌────┬──────────────┬───┬───────┐│f(t) │F(s) │…f(t)│F(s) │├────┼──────────────┼───┼───────┤│u(t) │ 一│……冬│ 1 ││e一以 │ 1/s │ │。。/(52+a,8)││Cos田ot │1/(s+a)l │ │ n!/s+, ││ │s/(52+。8) │ │ │└────┴──────────────┴───┴───────┘ 拉普拉斯变换的一些墓本性质在利用拉氏变换方法分析动态电路时,借助拉氏变换的一些性质可使问题简化。其主要性质有:若丫「fl(t)〕~Fl(、)、丫[f:(t)]一尸:(s)、犷[f(t)]=尸(s),则 (1)线性:对任何常数kl、kZ有 牙[klf:(t)+k:九(t)]一k,F,(s)+kZF:(s) (2)对t微分厂、「df(约门”,、,,。、之之},-一下下一l一Sr气百夕一j、UZ ‘a不山(3)对t积分、「{1_、(·)d·」一F(·)/·十f一’(。,/·式中f一,(0)一 (4)延时:f(约d:t。是正常数,有即f卜设 g「f(t一t。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条