1) atomization in graphite furnace
石墨炉原子化法
2) Graphite Furnace Atomizer
石墨炉原子化器
3) Graphite furnace atomic absorption spectrometry
石墨炉原子吸收法
1.
Determinations of trace Copper,Lead and Cadmium in seawater by graphite furnace atomic absorption spectrometry with cation exchange resin;
阳离子交换树脂吸附石墨炉原子吸收法测定海水中痕量铜、铅、镉
2.
To monitor the vanadium in Cicer arietinum L. by graphite furnace atomic absorption spectrometry;
石墨炉原子吸收法测定鹰嘴豆中的钒
3.
Determination of Platinum in Gangue Using Vitamin C as Matrix Modifier by Graphite Furnace Atomic Absorption Spectrometry;
抗坏血酸基体改进剂-石墨炉原子吸收法测定尾矿砂中铂
4) GF-AAS
石墨炉原子吸收光谱法
1.
Determination of Nickel in Urine by GF-AAS;
石墨炉原子吸收光谱法测定尿中镍
2.
GF-AAS Determination of Lead in Magnesium Chloride;
石墨炉原子吸收光谱法测定氯化镁中铅
3.
GF-AAS DETERMINATION OF TRACES OF TIN IN WASTE GAS FROM REFUSE INCINERATION WITH ZEEMAN EFFECT-BACKGROUND CORRECTION;
塞曼石墨炉原子吸收光谱法直接测定垃圾焚烧废气中锡
5) GFAAS
石墨炉原子吸收光谱法
1.
Determination of lead and cadmium in high salty food by co-precipitation-GFAAS;
共沉淀-石墨炉原子吸收光谱法测定高盐食品中的铅和镉
2.
Preconcentration and Separation of Trace Silver with Crosslinked Chitosan and Determination by GFAAS;
交联壳聚糖预富集分离-石墨炉原子吸收光谱法测定痕量银(Ⅰ)
3.
Evaluation of the uncertainty of measurement of lead in soil by GFAAS;
石墨炉原子吸收光谱法测定土壤中铅量的测量不确定度评定
6) Graphite Furnace Atomic Absorption Spectrometry
石墨炉原子吸收光谱法
1.
Determination of Cadmium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry with Cloud Point Extraction;
浊点萃取-石墨炉原子吸收光谱法测定环境水样中痕量镉的研究
2.
Determining trace arsenic in glue by graphite furnace atomic absorption spectrometry;
石墨炉原子吸收光谱法测定动物胶中痕量砷
3.
Determination of Lead in Tea Polyphenol by Graphite Furnace Atomic Absorption Spectrometry;
石墨炉原子吸收光谱法测定茶多酚中铅
补充资料:石墨炉原子化法
分子式:
分子量:
CAS号:
性质:一种非火焰原子化方法,用于原子吸收光谱分析。利用大电流(可达500安)通过石墨管产生最高可达3000℃的高温,使试样原子化。管内外都有惰性气体(氩气)通过,保护石墨管不被氧化和烧蚀。原子化过程分为干燥、灰化、原子化和净化四个阶段,都由微机控制,按程序自动进行。优点是原子化效率高,达95%以上,样品耗量少;自由原子在光路中平均停留时间达1秒以上,约为火焰原子化法的1000倍,灵敏度高,绝对检出限达10-12-10-14克;适合于难挥发、难原子化元素和微量样品的分析。缺点是分析结果的精密度比火焰原子法差,而且记忆效应较严重,要对杂散光引起的较强背景干扰做校正。
分子量:
CAS号:
性质:一种非火焰原子化方法,用于原子吸收光谱分析。利用大电流(可达500安)通过石墨管产生最高可达3000℃的高温,使试样原子化。管内外都有惰性气体(氩气)通过,保护石墨管不被氧化和烧蚀。原子化过程分为干燥、灰化、原子化和净化四个阶段,都由微机控制,按程序自动进行。优点是原子化效率高,达95%以上,样品耗量少;自由原子在光路中平均停留时间达1秒以上,约为火焰原子化法的1000倍,灵敏度高,绝对检出限达10-12-10-14克;适合于难挥发、难原子化元素和微量样品的分析。缺点是分析结果的精密度比火焰原子法差,而且记忆效应较严重,要对杂散光引起的较强背景干扰做校正。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条