1) thermodynamic general relations
热力学一般关系式
1.
This paper makes an intensive study of vapor constant-pressure generating process with the combination of the thermodynamic general relations, and illuminates the trend and position of curves,partitioning of phase-zones in detail.
本文结合热力学一般关系式,对水蒸气的定压发生过程进行了深入研究,对坐标图上曲线的走势、位置及相区的划分做了详尽的说明,这些成果,为精确分析水蒸气定压发生过程中的状态变化和参数计算提供了依据。
2) general authority relationship
一般权力关系
1.
But with the development of democracy and rule of law,the trend of the evolution to general authority relationship cannot be ignored.
从务实的角度看,特别权力关系因回应了现实法制的需要,具有一定的生存空间,但随着民主法治的发展,它必然会向一般权力关系演进,并最终将被抛弃。
3) thermodynamic relations
热力学关系式
1.
It is difficult to memorize thermodynamic relations because it is too many and very complex.
热力学关系式多而杂,学生记忆十分困难。
2.
Set forth the concept of State Function Square and the Maxwell Square,bring forward the method of memorize the thermodynamic relations use the State Function Square and the Maxwell Square.
本文提出了状态函数正方形和Maxwell正方形的概念,提出了使用状态函数正方形和Maxwell正方形记忆热力学关系式方法。
4) general mechanics
一般力学
1.
Generalized variational principles with two kinds of variables of initial value problems in general mechanics;
一般力学初值问题两类变量的广义变分原理
2.
Dual form of generalized variational principles in general mechanics;
一般力学广义变分原理的对偶形式
3.
This paper discusses the development of aeronautics and astronautics with mechanics, reveals the development of new branches of interconnected sciences in mechanics, describes the relations of flight mechanics with aerodynamics, structure mechanics, general mechanics and automatic control, and introduces the new branch of flight mechanics—flight dynamics of elastic vehicle.
文章论述了航空航天技术发展与力学学科发展的依存关系 ,讨论了力学学科间的交叉及交叉学科的产生 ,重点介绍了飞行力学与空气动力学、结构力学、一般力学、自动控制等学科间的关系 ,进而讨论了飞行力学的分支———弹性飞行器动力
6) basic thermodynamics relation formula
热力学基本关系式
补充资料:热力学函数基本关系式
对于封闭系统,将热力学第一定律与热力学第二定律相结合,可以得到如下一组关系式:
dU=TdS-pdV
(1)
dH=TdS+Vdp
(2)
dA=-SdT-pdV
(3)
dG=-SdT+Vdp
(4)式中U为内能;H为焓;A为亥姆霍兹函数;G为吉布斯函数;S为熵;T为热力学温度;V为体积;p为压力。这一组关系式就称为封闭系统的热力学函数基本关系式。式(1)~(4)只适用于内部平衡且不做非体积功的封闭系统。
利用上述基本关系式的积分,可以求得一个封闭系统经历一个任意可逆过程后状态函数的变化。对于只由两个独立变量便可描述的封闭系统(即没有不可逆的化学变化和相变化的封闭系统),上述基本关系式实际上可看作状态函数U、H、A和G的全微分表达式。无论过程是否可逆,它们的积分都存在,且只由系统的始、终态决定。因此,对这样的系统,不可逆过程的状态函数的变化,也可由上述基本关系式积分求得。
利用封闭系统的热力学基本关系式,还可以推导出许多重要的关系式。例如,从式(1)~(4)可导出:
T=(дU/дS)V=(дH/дS)p (5)
p=-(дU/дV)S=-(дA/дV)T (6)
V=(дH/дp)S=(дG/дp)T (7)
S=-(дA/дT)V=-(дG/дT)p (8)
利用数学上的全微分性质,还可由式(1)~(4)导出:
(дT/дV)S=-(дp/дS)V (9)
(дT/дp)S=(дV/дS)p (10)
(дS/дV)T=(дp/дT)V (11)
(дS/дp)T=-(дV/дT)p (12)式(9)~(12)称为麦克斯韦关系式组。利用此关系式,可把一些实验上难以测量的量〔如(дS/дp)T〕转化为易于测量的量〔如(дV/дT)p〕。
利用麦克斯韦关系式,可从式(1)和(2)导出:
(дU/дV)T=T(дp/дT)V-p (13)
(дH/дp)T=-T(дV/дT)p+V (14) 式(13)、(14)描述了系统的内能U和焓H随系统的体积和压力的变化关系,通常称为热力学状态方程。
对化学组成可变的均相系统,式(1)~(4)可改写为:
(15)
(16)
(17)
(18)
式(15)~(18)称为开放系统的热力学函数基本关系式。式中μB为系统中物质B的化学势;dnB为物质B的物质的量的微小变化值。
如果系统在变化过程中除体积功和化学功外还有其他功(如电、磁、表面功等),则热力学函数基本关系式的形式为
(19)
(20)
(21)
(22)
式中W ′为除体积功以外的其他功。
dU=TdS-pdV
(1)
dH=TdS+Vdp
(2)
dA=-SdT-pdV
(3)
dG=-SdT+Vdp
(4)式中U为内能;H为焓;A为亥姆霍兹函数;G为吉布斯函数;S为熵;T为热力学温度;V为体积;p为压力。这一组关系式就称为封闭系统的热力学函数基本关系式。式(1)~(4)只适用于内部平衡且不做非体积功的封闭系统。
利用上述基本关系式的积分,可以求得一个封闭系统经历一个任意可逆过程后状态函数的变化。对于只由两个独立变量便可描述的封闭系统(即没有不可逆的化学变化和相变化的封闭系统),上述基本关系式实际上可看作状态函数U、H、A和G的全微分表达式。无论过程是否可逆,它们的积分都存在,且只由系统的始、终态决定。因此,对这样的系统,不可逆过程的状态函数的变化,也可由上述基本关系式积分求得。
利用封闭系统的热力学基本关系式,还可以推导出许多重要的关系式。例如,从式(1)~(4)可导出:
T=(дU/дS)V=(дH/дS)p (5)
p=-(дU/дV)S=-(дA/дV)T (6)
V=(дH/дp)S=(дG/дp)T (7)
S=-(дA/дT)V=-(дG/дT)p (8)
利用数学上的全微分性质,还可由式(1)~(4)导出:
(дT/дV)S=-(дp/дS)V (9)
(дT/дp)S=(дV/дS)p (10)
(дS/дV)T=(дp/дT)V (11)
(дS/дp)T=-(дV/дT)p (12)式(9)~(12)称为麦克斯韦关系式组。利用此关系式,可把一些实验上难以测量的量〔如(дS/дp)T〕转化为易于测量的量〔如(дV/дT)p〕。
利用麦克斯韦关系式,可从式(1)和(2)导出:
(дU/дV)T=T(дp/дT)V-p (13)
(дH/дp)T=-T(дV/дT)p+V (14) 式(13)、(14)描述了系统的内能U和焓H随系统的体积和压力的变化关系,通常称为热力学状态方程。
对化学组成可变的均相系统,式(1)~(4)可改写为:
(15)
(16)
(17)
(18)
式(15)~(18)称为开放系统的热力学函数基本关系式。式中μB为系统中物质B的化学势;dnB为物质B的物质的量的微小变化值。
如果系统在变化过程中除体积功和化学功外还有其他功(如电、磁、表面功等),则热力学函数基本关系式的形式为
(19)
(20)
(21)
(22)
式中W ′为除体积功以外的其他功。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条