说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 纳米DLC膜
1)  nanostructured amorphous carbon thin film
纳米DLC膜
2)  Cr-DLC nanocomposite films
Cr-DLC纳米复合薄膜
3)  DLC films
DLC膜
1.
Metal-DLC film is an effective way to reduce the stress and improve the mechanical properties of DLC films.
述评了金属-类金刚石薄膜的制备工艺、不同金属粒子对DLC薄膜形态、键结构、力学及摩擦磨损性能、物理化学性能等的影响,指出在金属粒子对DLC膜的力学及摩擦学性能的影响方面还有很多待确定的因素。
2.
The structure and tribological properties of TiNx/DLC films was investigated.
采用等离子体基离子注入技术在30CrMnSi钢上制备了TiNx/DLC多层膜,通过X射线光电子谱和激光喇曼光谱测试分析了膜的结构特征,TiNx/DLC膜大气下的摩擦性能在球盘式摩擦磨损试验机上进行。
3.
The composition, structure and properties of DLC films were investigated by spectroscopic ellipsometer, Raman spectroscopy, X–ray photoelectron spectroscopy(XPS), powder X–ray diffraction(XRD), spectrophotometer, nanoindenter, ball-on-disk tribometer, Rockwell apparatus and optical microscope.
硅片上的薄膜厚度均为37nm左右,75V、100V偏压下制得的薄膜具有最高的sp3键含量,薄膜具有典型的DLC膜Raman光谱特征。
4)  DLC film
DLC膜
1.
Effect of pulsed bias on chemical structure of DLC films prepared by plasma processing;
脉冲偏压对等离子体沉积DLC膜化学结构的影响
2.
Ti alloyed DLC films were prepared with a Y B H N Ⅱ A-1 deposition device by dual-excitation energy source.
在一台-1型双激发源等离子弧薄膜沉积装置上制取Ti合金化DLC膜,用纳米硬度计、显微硬度计、原子力显微镜以及X射线衍射仪和光电子能谱仪等手段对薄膜的力学性能和结构进行了分析和测定。
3.
We found that the surfaces of the DLC films with thickness of 4 48 and 2 78 nm are much rougher than that with thickness of 12 7,64 9 and 153 4 nm.
对厚度为 1 5 3 4nm ,6 4 9nm ,1 2 0 7nmDLC膜摩擦力和法向力的关系进行研究 ,实验表明施加较低载荷 ,摩擦力和法向力成线性关系 ,符合Amontons’s定律 ;而膜厚为 4 4 8nm、2 78nm样品由于粗糙度、峰态和偏态的差异导致摩擦力和载荷关系不明显 ,研究指出针尖和薄膜的表面接触可以简化为Tomlinson模型 ,借助原子晶格振动的无损摩擦机理解释了这一现
5)  DLC
DLC膜
1.
Plasma diagnosis to PECVD system and structure/properties of DLC films;
PECVD系统的等离子体诊断及DLC膜的结构和性能研究
6)  Al-DLC thin films
Al-DLC薄膜
补充资料:看纺织印染中应用纳米材料和纳米技术

纺织印染中应用纳米材料和纳米技术时,除了要解决纳米材料的制备技术之外,重要的是要解决好纳米材料的应用技术,其中关键问题是使纳米粒子和纺织印染材料的基本成分(即聚合物材料)之间处于适当的结合状态。印染中,纳米粒子在聚合物基体中的分散和纳米粒子在聚合物表面的结合是主要的应用技术问题。  


    制备聚合物/无机纳米复合材料的直接分散法,适用于各种形态的纳米粒子。印染中纳米粒子的使用一般采用直接分散法。但是由于纳米粒子存在很大的界面自由能,粒子极易自发团聚,利用常规的共混方法不能消除无机纳米粒子与聚合物基体之间的高界面能差。因此,要将无机纳米粒子直接分散于有机基质中制备聚合物纳米复合材料,必须通过必要的化学预分散和物理机械分散打开纳米粒子团聚体,将其均匀分散到聚合物基体材料中并与基体材料有良好的亲和性。直接分散法可通过以下途径完成分散和复合过程:  


    高分子溶液(或乳液)共混:首先将聚合物基体溶解于适当的溶剂中制成溶液(或乳液),然后加入无机纳米粒子,利用超声波分散或其他方法将纳米粒子均匀分散在溶液(或乳液)中。有人将环氧树脂溶于丙酮后加入经偶联剂处理过的纳米TiO2,搅拌均匀,再加入 40wt%的聚酰胺后固化制得了环氧树脂/TiO2纳米复合材料。还有人将纳米SiO2粒子用硅烷偶联剂处理后,改性不饱和聚酯。  


    熔融共混:将纳米无机粒子与聚合物基体在密炼机、双螺杆等混炼机械上熔融共混。如将PMMA和纳米SiO2粒子熔融共混后,双螺杆造粒制得纳米复合材料。又如利用偶联剂超声作用下处理纳米载银无机抗菌剂粒子,分散制得PP/抗菌剂、PET/抗菌剂、PA/抗菌剂等复合树脂,然后经熔融纺丝工艺加工成抗菌纤维。研究表明,将经过表面处理的纳米抗菌剂粒子通过双螺杆挤出机熔融混炼,在聚合物中可以达到纳米尺度分散,获得了具有良好综合性能的纳米抗菌纤维,对大肠杆菌、金黄色葡萄球菌的抗菌率达到95%以上(美国AATCC-100标准)。  


    机械共混:将偶联剂稀释后与碳纳米管混合,再与超高分子量聚乙烯(UHMWPE)混合放入三头研磨机中研磨两小时以上。将研磨混合物放入模具,热压,制得功能型纳米复合材料。  


    聚合法:利用纳米SiO2粒子填充(Poly(HEMA))制备了纳米复合材料。纳米SiO2粒子首先被羟乙基甲基丙烯酸(HEMA)功能化,然后与HEMA单体在悬浮体系中聚合。还有利用SiO2胶体表面带酸性,加入碱性单体4-乙烯基吡咯进行自由基聚合制得包覆型纳米复合材料。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条