1) Two-dimensional teager filters
二维Teager滤波器
2) Teager-Kaiser filter
Teager-Kaiser滤波器
1.
By utilizing the suppression of noise and extraction of signal of the nonlinear Teager-Kaiser filter,a likelihood ratio of channel estimation is defined to represent the probability distribution of channel parameters.
利用非线性Teager-Kaiser滤波器在抑制噪声的同时可以有效提取信号的特征,定义了一个表征信道参数概率分布的似然比,对该似然函数的最大化是首先得到路径延迟的极值,然后求得复路径衰耗。
3) 2-dimension filter
二维滤波器
1.
It may modify one or more parameters to study the character and effects of 2-dimension filter system.
这种可视化处理过程,形象直观,便于理解和学习图像处理过程、二维滤波器系统特征。
4) two-D wavenumber filter
二维波数滤波器
5) 2D filter bank
二维滤波器组
6) two-dimensional FIR filter
二维FIR滤波器
1.
Constrained least-squares design of a class of two-dimensional FIR filters;
一类二维FIR滤波器的约束最小二乘设计
补充资料:维纳滤波
利用平稳随机过程的相关特性和频谱特性对混有噪声的信号进行滤波的方法,1942年美国科学家N.维纳为解决对空射击的控制问题所建立。维纳滤波是40年代在线性滤波理论方面所取得的最重要的成果。
滤波问题 用x(t)表示信号的真实值,n(t)表示噪声,其中t表示时间,则实际上观测到的信号是
z(t)=x(t)+n(t)滤波就是要从实测信号z(t)中尽可能滤掉噪声n(t),以得到真实信号x(t)的良好估值。数学上,滤波问题可以归结为根据z(t)来求出x(t)的最优估值憫(t)。
维纳滤波中,最优估值憫(t)是在均方误差的数学期望E[x(t)-憫(t)]2取极小意义下的一种估值。在假定信号过程x(t)与噪声过程n(t)为联合平稳和假定在半无限时间区间(-∞,t)内能获得z(t)的全部观测数据的前提下,维纳滤波给出了计算最优估值憫(t)的一种方法。
维纳滤波器 实现维纳滤波方法的系统或装置称为维纳滤波器。维纳滤波器在结构上是一个定常线性系统(见图),通过合理的设计可使其对噪声n(t)具有良好的过滤特性。当观测信号z(t)=x(t)+n(t)输入滤波器时,它的输出就是信号x(t)的最优估值憫(t)。
构造维纳滤波器的步骤 假设维纳滤波器的单位脉冲响应函数是h(t),则最优估值憫(t)的关系式为
如用Rxz(τ)表示x(t)和z(t)的互相关函数,Rzz(τ)表示z(t)的自相关函数,那么业已证明它们之间具有类似于上式的关系式
这个关系式称为维纳-霍夫方程。如果所讨论的各随机过程均具有各态历经性,则式中的Rxz(τ)和Rzz(τ)均是已知的。设计维纳滤波器的问题,可归结为从维纳-霍夫积分方程中解出未知函数h(t)。h(t)的拉普拉斯变换就是所要决定的维纳滤波器的传递函数H(s)。对于一般问题,维纳-霍夫方程往往不易求解。但当给定问题的随机过程的功率谱密度是有理分式函数时,H(s)的显式解就可比较容易地定出。根据求得的H(s)即可构造所需的维纳滤波器,而信号的最优估值憫(t)则可由相应关系式定出。
维纳滤波器的优缺点 维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声n(t)为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。
参考书目
钱学森、宋健:《工程控制论》(下册),科学出版社,北京,1981。
Y.W.Lee, Statistical Theory of Communication, John Wiley and Sons,Inc.,New York,1960.
滤波问题 用x(t)表示信号的真实值,n(t)表示噪声,其中t表示时间,则实际上观测到的信号是
z(t)=x(t)+n(t)滤波就是要从实测信号z(t)中尽可能滤掉噪声n(t),以得到真实信号x(t)的良好估值。数学上,滤波问题可以归结为根据z(t)来求出x(t)的最优估值憫(t)。
维纳滤波中,最优估值憫(t)是在均方误差的数学期望E[x(t)-憫(t)]2取极小意义下的一种估值。在假定信号过程x(t)与噪声过程n(t)为联合平稳和假定在半无限时间区间(-∞,t)内能获得z(t)的全部观测数据的前提下,维纳滤波给出了计算最优估值憫(t)的一种方法。
维纳滤波器 实现维纳滤波方法的系统或装置称为维纳滤波器。维纳滤波器在结构上是一个定常线性系统(见图),通过合理的设计可使其对噪声n(t)具有良好的过滤特性。当观测信号z(t)=x(t)+n(t)输入滤波器时,它的输出就是信号x(t)的最优估值憫(t)。
构造维纳滤波器的步骤 假设维纳滤波器的单位脉冲响应函数是h(t),则最优估值憫(t)的关系式为
如用Rxz(τ)表示x(t)和z(t)的互相关函数,Rzz(τ)表示z(t)的自相关函数,那么业已证明它们之间具有类似于上式的关系式
这个关系式称为维纳-霍夫方程。如果所讨论的各随机过程均具有各态历经性,则式中的Rxz(τ)和Rzz(τ)均是已知的。设计维纳滤波器的问题,可归结为从维纳-霍夫积分方程中解出未知函数h(t)。h(t)的拉普拉斯变换就是所要决定的维纳滤波器的传递函数H(s)。对于一般问题,维纳-霍夫方程往往不易求解。但当给定问题的随机过程的功率谱密度是有理分式函数时,H(s)的显式解就可比较容易地定出。根据求得的H(s)即可构造所需的维纳滤波器,而信号的最优估值憫(t)则可由相应关系式定出。
维纳滤波器的优缺点 维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声n(t)为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。
参考书目
钱学森、宋健:《工程控制论》(下册),科学出版社,北京,1981。
Y.W.Lee, Statistical Theory of Communication, John Wiley and Sons,Inc.,New York,1960.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条