1) Box-Jenkins modeling method
Box-Jenkins建模法
2) Box-Jenkins modeling
Box-Jenkins建模
3) Box-Jenkins method
Box-Jenkins建模方法
4) Box-Jenkins model
Box-Jenkins模型
1.
Based on singular value decomposition(SVD) and recursive generalized extended least squares(RGELS),a new recursive algorithm of parameter estimation for Box-Jenkins model is proposed.
基于奇异值分解和递推广义增广最小二乘原理,提出了Box-Jenkins模型参数估计的一种递推算法。
2.
Based on BOX-Jenkins model and exponential smoothing method,this paper attempts to establish the model of time series of Sichuan per capita GDP and analyze the short-term forecasting,implying that the goal of Sichuan province to realize the economic increase in eleventh five-year plan could be achieved on condition that the slower speed of economic increase will be ca.
本文用BOX-Jenkins模型和指数平滑法对四川省人均GDP时间序列进行建模和短期预测分析,结果显示,四川省提出的“十一五”经济增长目标是可以实现的,但应防止新一轮经济增长周期带来的经济增长速度减慢。
5) Box-Jenkins models
Box-Jenkins模型
1.
Comparisons of bias compensation methods and other identification approaches for Box-Jenkins models;
Box-Jenkins模型偏差补偿方法与其他辨识方法的比较
6) Box-jenkins method
Box-Jenkins方法
1.
Box-Jenkins method is used to carry on the analysis of Guangxi GDP from 1950 to 2004, and the ARIMA model is established .
利用Box-Jenkins方法对1950至2004年广西国内生产总值进行了分析,建立了ARIMA模型,检验结果表明该模型有较好的预测效果。
补充资料:相关分析法建模
通过对系统输入和输出的相关函数之间的关系进行分析建立系统的数学模型。这种方法可以比较有效地克服系统输出中含有的随机噪声给建模带来的困难。适当选择输入,使它与噪声成为统计不相关的,就可通过相关运算把系统的输入输出关系转变为输入自相关和输入输出互相关的关系,从而消除系统噪声的影响,使建模更为容易。
随机系统的建模有两种常用的相关分析法。第一种是以脉冲响应(见过渡过程)为模型,连续系统和离散系统的输入与输出可以通过脉冲响应联系起来,它们的数学表达式分别是 和yt=。式中h(τ)和hτ是系统的脉冲响应,u(t)和ut是系统的输入,y(t)和yt是系统的输出,ε(t)和εt分别是与u(t)和ut统计不相关的白噪声。通过相关运算,分别得到系统的输入自相关函数Ruu(t)与输入输出互相关函数Ruy(t)之间的关系:和。于是随机性的输入与输出之间的关系被确定性的自相关函数与互相关函数之间的关系所代替,这就是著名的维纳-霍夫方程 (见维纳滤波)。在适当地选择输入,求得输入自相关函数和输入输出互相关函数之后,只须解出维纳-霍夫方程就可以得到随机系统的脉冲响应模型。第二种随机系统模型是自回归模型:yt=a1yt-1+a2yt-2+...+anyt-n+εt,式中{yt}是系统的平稳输出序列,{εt}是白噪声序列,yt与εt,εt+1,...是统计不相关的,a1,a2,...,an是模型中待估计的系数。对于这种模型,相关分析法建模是利用输出序列{yt}的自相关序列{rj=E[yt,yt+j],j=0,1,2,...}求得系数a1,a2,...,an的估计值,最后得到随机系统的自回归模型。
随机系统的建模有两种常用的相关分析法。第一种是以脉冲响应(见过渡过程)为模型,连续系统和离散系统的输入与输出可以通过脉冲响应联系起来,它们的数学表达式分别是 和yt=。式中h(τ)和hτ是系统的脉冲响应,u(t)和ut是系统的输入,y(t)和yt是系统的输出,ε(t)和εt分别是与u(t)和ut统计不相关的白噪声。通过相关运算,分别得到系统的输入自相关函数Ruu(t)与输入输出互相关函数Ruy(t)之间的关系:和。于是随机性的输入与输出之间的关系被确定性的自相关函数与互相关函数之间的关系所代替,这就是著名的维纳-霍夫方程 (见维纳滤波)。在适当地选择输入,求得输入自相关函数和输入输出互相关函数之后,只须解出维纳-霍夫方程就可以得到随机系统的脉冲响应模型。第二种随机系统模型是自回归模型:yt=a1yt-1+a2yt-2+...+anyt-n+εt,式中{yt}是系统的平稳输出序列,{εt}是白噪声序列,yt与εt,εt+1,...是统计不相关的,a1,a2,...,an是模型中待估计的系数。对于这种模型,相关分析法建模是利用输出序列{yt}的自相关序列{rj=E[yt,yt+j],j=0,1,2,...}求得系数a1,a2,...,an的估计值,最后得到随机系统的自回归模型。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条