1) Conditional Maximum Entropy
条件最大熵
2) weak maximal condition
弱最大条件
3) conditional entropy
条件熵
1.
Reduction method of decision table based on new conditional entropy;
基于新的条件熵的决策表约简方法
2.
An incremental approach to computation of a core based on conditional entropy;
一种基于条件熵的增量核求解方法
3.
Rules extraction method of decision tree based on new conditional entropy;
基于新的条件熵的决策树规则提取方法
4) condition entropy
条件熵
1.
Based on the characteristics of entropy,relevant entropy and condition entropy,a rough granulation approaching variable is added in the rough set theory.
本文基于信息论中信息熵、相对熵和条件熵的概念和性质,在粗糙集系统中增加了一个粗粒度逼近量,并根据粗粒度逼近量提出了一种多尺度逼近的属性约简或者叫规则提取的新算法。
2.
To this issue,the condition entropy is used as heuristic information for reducing the searching room.
针对这一不足,利用粗糙集理论中的条件熵作为启发信息,来缩小搜索空间,并在算法中加入消除冗余属性的二次约简过程,得到一种改进的启发式属性约简算法。
3.
Firstly,the paper gives some concept of rough set theory:decision table,indiscernible relation,information entropy and condition entropy.
首先给出粗糙集理论的几个基本概念:决策表、不可分辨关系、信息熵和条件熵,然后对离散化问题进行介绍,给出断点分类的条件熵定义,在此基础上给出了断点选择的粗糙集连续属性离散化算法。
5) entropy condition
熵条件
1.
Researches on the resolution of fast large time step entropy condition scheme;
快速大时间步长熵条件格式的分辨率研究
2.
By means of characteristics and based on initial conservation law, this paper discusses the existence and uniqueness of weak solution, along with its Rankine-Hugoniot and Entropy Condition.
本文运用特征线方法 ,从交通流原始守恒方程出发给出了解决弱解存在与唯一性的间断关系与熵条件 。
3.
With the help of characteristic analysis,under suitable generalized Rankine-Hugoniot relation and entropy condition,four different structures of Riemann solutions are established uniquely,in which the interactions among delta shock wave,vacuum and contact discontinuity are clarified.
借助于特征分析方法,在适当的广义Rankine-Hugoniot条件和熵条件下,得到狄拉克激波与真空、接触间断之间相互作用的结果,建立了四种不同的唯一的黎曼解结构。
6) the condition of entropy increase
熵增条件
补充资料:最大熵法
对信号的功率谱密度估计的一种方法。1967年由J.P.伯格所提出。其原理是取一组时间序列,使其自相关函数与一组已知数据的自相关函数相同,同时使已知自相关函数以外的部分的随机性最强,以所取时间序列的谱作为已知数据的谱估值。它等效于根据使随机过程的熵为最大的原则,利用N个已知的自相关函数值来外推其他未知的自相关函数值所得到的功率谱。最大熵法功率谱估值是一种可获得高分辨率的非线性谱估值方法,特别适用于数据长度较短的情况。
最大熵法谱估值对未知数据的假定 一个平稳的随机序列,可以用周期图法对其功率谱进行估值。这种估值方法隐含着假定未知数据是已知数据的周期性重复。现有的线性谱估计方法是假定未知数据的自相关函数值为零,这种人为假定带来的误差较大。最大熵法是利用已知的自相关函数值来外推未知的自相关函数值,去除了对未知数据的人为假定,从而使谱估计的结果更为合理。
熵在信息论中是信息的度量,事件越不确定,其信息量越大,熵也越大。对于上述问题来说,对随机过程的未知的自相关函数值,除了从已知的自相关函数值得到有关它的信息以外,没有其他的先验知识。因而,在外推时,不希望加以其他任何新的限制,亦即使之"最不确定"。换言之,就是使随机过程的熵最大。
最大熵法功率谱估值表达式 最大熵法功率谱估值的表达式为
式中PM为M阶预测误差滤波器的输出功率;B为随机过程的带宽;为采样周期;ɑm(m=1,2,...,M)由下式决定:
式中rNx(M)为已知的随机过程的自相关函数值。
从功率谱估值的表达式可以看出,最大熵法与自回归信号模型分析法以及线性预测误差滤波器是等价的,只是从不同的观点出发得到了相同的结果。
由已知信号计算功率谱估值的递推算法 应用上述的谱估值表达式进行计算时,需要知道有限个自相关函数值。但是,实际的情况往往是只知道有限长的时间信号序列,而不知道其自相关函数值。为了解决这个问题,J.P.伯格提出了一种直接由已知的时间信号序列计算功率谱估值的递推算法,使最大熵法得到广泛的应用。递推算法如下:
递推算法只需要知道有限长的时间信号序列,不须计算其自相关函数值,所得的解保证是稳定的。但是,其解只是次优解。
应用递推算法往往使谱估值出现"谱线分裂"与"频率偏移"等问题,因而,又有各种改进的算法。其中,较著名的有傅格算法和马普尔算法,但是所需的计算量较大。另外,在有噪声的情况下,如何选定阶数仍有待进一步探讨。
最大熵法谱估值对未知数据的假定 一个平稳的随机序列,可以用周期图法对其功率谱进行估值。这种估值方法隐含着假定未知数据是已知数据的周期性重复。现有的线性谱估计方法是假定未知数据的自相关函数值为零,这种人为假定带来的误差较大。最大熵法是利用已知的自相关函数值来外推未知的自相关函数值,去除了对未知数据的人为假定,从而使谱估计的结果更为合理。
熵在信息论中是信息的度量,事件越不确定,其信息量越大,熵也越大。对于上述问题来说,对随机过程的未知的自相关函数值,除了从已知的自相关函数值得到有关它的信息以外,没有其他的先验知识。因而,在外推时,不希望加以其他任何新的限制,亦即使之"最不确定"。换言之,就是使随机过程的熵最大。
最大熵法功率谱估值表达式 最大熵法功率谱估值的表达式为
式中PM为M阶预测误差滤波器的输出功率;B为随机过程的带宽;为采样周期;ɑm(m=1,2,...,M)由下式决定:
式中rNx(M)为已知的随机过程的自相关函数值。
从功率谱估值的表达式可以看出,最大熵法与自回归信号模型分析法以及线性预测误差滤波器是等价的,只是从不同的观点出发得到了相同的结果。
由已知信号计算功率谱估值的递推算法 应用上述的谱估值表达式进行计算时,需要知道有限个自相关函数值。但是,实际的情况往往是只知道有限长的时间信号序列,而不知道其自相关函数值。为了解决这个问题,J.P.伯格提出了一种直接由已知的时间信号序列计算功率谱估值的递推算法,使最大熵法得到广泛的应用。递推算法如下:
递推算法只需要知道有限长的时间信号序列,不须计算其自相关函数值,所得的解保证是稳定的。但是,其解只是次优解。
应用递推算法往往使谱估值出现"谱线分裂"与"频率偏移"等问题,因而,又有各种改进的算法。其中,较著名的有傅格算法和马普尔算法,但是所需的计算量较大。另外,在有噪声的情况下,如何选定阶数仍有待进一步探讨。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条