1) stepping approaching control
逐次逼近控制
2) successive approximate optimal simulation control
逐次逼近最优控制
3) cut and try control algorithm
逐次逼近控制算法
4) gradual approach
逐次逼近
1.
In order to eliminate systemic error caused by different times, different labs, different analysis methods, and to solve some problems in merging maps, we propose a map adjustment theory and gradual approach method, based on a hypothesis that there are same means and standard deviate of data in adjacent small areas between maps.
针对区域地球化学中因不同时间、不同实验室、不同分析手段等原因存在于各图幅数据的系统偏差而造成的图边拼接问题,提出了抑制图幅间数据系统误差影响的图幅平差思想,阐述了图幅平差的数学原理及逐次逼近平差方法。
2.
By means of constructional iterative equationthis paper presents a way to give out the existence and singularity of a type of e- quational root with gradual approach method.
本文通过构造迭代函数,利用逐次逼近的方法给出了一类方程根的存在性与唯一性的判断的一种解决方案。
3.
Kepler s equations can be solved with the gradual approach, which can be further extended to the solution of the non-linear equations.
求解开普勒方程可用逐次逼近法 ,这种方法还可推广到非线性方程的求解问题中。
5) successive approximation
逐次逼近
1.
Capacitor self-calibration technique used in time-interleaved successive approximation ADC;
时间交叉存取逐次逼近型ADC中的电容自校准技术(英文)
2.
SDP with successive approximation and its application in the operation of multireservoir system;
逐次逼近随机动态规划及库群优化调度
3.
According to IEEE standard for short time disturbance of power quality,a fast successive approximation classification method is developed.
针对电力短时扰动信号具有非平稳、突发性的特点,应用小波变换的多分辨率分析特性检测扰动信号的特征参量,依据IEEE制定的短时电能质量扰动标准,提出了一种逐次逼近型的快速分类法。
6) successive approximation method
逐次逼近法
1.
In this paper, we study the decreasing types of the output of oil field opened by pouring water and the successive approximation method of its solution in mathematics and seepage flowing mechanics.
从数学和渗流力学概念对注水开发油田产量递减类型和判别求解方法进行了研究,提出产量递减类型应为指数递减和双曲线递减两种类型;双曲线递减的递减指数n的变化范围应为0<n<∞;递减类型判别和递减参数求解方法可以根据最小二乘法原理,采用数学逐次逼近法直接求解产量随时间递减的关系式。
2.
The equivalent stop and P~∞、W~∞ successive approximation methods used in the design of zooming lens are described.
介绍在变焦距镜头设计中采用的两种方法:等效光阑法和P~∞,W~∞逐次逼近法。
3.
The solution to the Goursat problem of the equations is obtained by means of the classical characteristic method and the successive approximation method.
本文通过经典的特征线法和逐次逼近法方法求解两个自变量的一般线性双曲型方程组的Goursat问题,得到了其经典解的存在唯一性,并进一步讨论了其解对边界条件的连续依赖性。
补充资料:逐次逼近
逐次逼近
successive approximation
逐次通近(sueeessive aPProximation)用于塑造新的反应或行为的方法。将欲塑造的新反应—靶反应分解成一系列难度渐增的子反应,使之逐渐接近最终所要学习的靶反应。每一个子反应都得到适当的强化以鼓励病人作出进一步的反应,最后学会新反应。参见“塑造法”。 (梁宝勇撰徐俊见申)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条