2) linearly locally connected domain
线性局部连通域
1.
The main purpose of this paper is to study the relation among a John domain,a uniform domain and a linearly locally connected domain.
本文研究了∫ΩBn中的John域与一致域和线性局部连通域的关系。
3) Multilayered Meshing Locally Connected Localization
多层网状局域连通定位
4) local interconnect
局域互连
5) local traffic
局域交通
1.
The study was on the urban local traffic network capacity.
本文研究了城市局域交通网络容量问题。
6) Locally connected
局部连通
1.
Devoted to the study on the theory of H-connected space,which has been investigated by Jungck [1] in detail,we first give Jungck’s theorem another proof free from Whyburn [2] ,and then give another theorem in which“compact”hypothesis in Jungck’s theorem is replaced by the locally connected one.
其次对局部连通的H -连通空间得到了同样的定理 :有限个具有第一可数性质的局部连通的H -连通空间的乘积空间是H -连通空间 。
2.
It is proved that if G is conected, locally connected graph on at least three vertices such that the set of claw centers is independent, and if the subgraph induced by the neighbor of v is strong 2-dominated for any claw centre v , then G is fully cycle extendable.
设G是顶点数不少于3的连通、局部连通图。
3.
In this paper, we prove that if G is connected, locally connected graph on at least three vertices such that the set of claw centres B is independent, and if G-B is locally connected, then G is fully cycle extendable.
本文将证明:设G是顶点数≥3的连通、局部连通图,如果G的爪心集合B是点独立集,且G-B是局部连通的,则G是完全圈可扩的。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条