1) analgsis of thme series with multi-varieties
时间序列频谱分析
2) spectral-temporal analysis
频谱-时间分析
3) time series analysis
时间序列分析
1.
Application of time series analysis in the prediction of schistosomiasis prevalence in the areas of “breaking dikes or opening sluice for waterstore” in Dongting Lake;
时间序列分析在洞庭湖区双退试点血吸虫病发病预测中的应用
2.
Gyroscope Drift Forecasting Based on Stationary Time Series Analysis;
基于平稳时间序列分析方法的陀螺漂移预测
3.
Combinative time series analysis method for the prediction of the groundwater level;
地下水位预报中的组合时间序列分析法
4) time sequence analysis
时间序列分析
1.
The applied problem of the time sequence analysis is solved.
在综合考虑数学模型的预测精度与编程实现的可操作性基础上,提出了利用模块对变形监测数据进行时间序列分析,并概括介绍了该模块的3个主要命令使用方法,解决了时间序列分析在监测数据处理中实现起来非常繁琐的问题。
2.
Real estate cycles were analyzed using time sequence analysis and artifical neural network model to help market participants identify real estate cycle scientifically and make reasonable decisions.
利用时间序列分析对1992—2003年的北京房地产市场周期发展阶段进行判别研究,并将该判别结果作为训练样本,利用局部改进的标准BP人工神经网络构建了房地产周期识别模型。
3.
In order to predict the mine gas emission quantity,base on the basic theory of the grey system and the time sequence analysis,a random dynamic model to predict the mine gas emission quantity was established.
为了对矿井瓦斯涌出量进行预测,基于灰色系统和时间序列分析的基本理论,建立了矿井瓦斯涌出量预测的随机动态模型,并将该模型应用到某矿瓦斯涌出量预测分析中。
5) time series analysis method
时间序列分析法
1.
Application of time series analysis method in groundwater level dynamic forecast of Shenyang City;
时间序列分析法在沈阳市地下水位动态预报中的应用
2.
By means of time series analysis method,random drift signal output by oriention gyro in navigation system is analyzed under normal and fault conditions so as to obtain a fault identification method of gyro performance.
运用时间序列分析法对正常和故障情况下导航系统中方位保持部件陀螺仪输出随机漂移信号进行分析,得到一种判断陀螺仪性能故障的方法。
6) time series analysis
时间序列分析法
1.
Applying the method of time series analysis to forecasting the paddy water requirement;
时间序列分析法在水稻需水量预测中的应用
2.
This paper employs the neural network method, time series analysis method and recursive neural networks technology based on data mining and knowledge discovery to predict the iron and steel output.
文章使用基于数据挖掘和知识发现的人工神经网络法、时间序列分析法、递归神经网络技术来预测钢铁产量的方法,并将递归神经网络方法预测的结果与前面的两种方法的预测结果进行比较,比较的结果说明该方法是可行的。
补充资料:时间序列分析
时间序列分析 time series analysis 用随机过程理论和数理统计学方法,对时间序列进行的统计分析。数理统计学的分支。时间序列是指被观测到的依时间次序排列的数据序列。从经济到工程技术,从天文到地理和气象,几乎在各种领域中都会遇到时间序列。时间序列分析包括一般统计分析(如自相关分析、谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制和滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则着重研究数据序列的相互依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,记录了某地区第一个月,第二个月,…第T个月的降雨量,利用时间序列分析方法,可以对未来各月的雨量进行预报。时间序列分析在第二次世界大战前就已应用于经济预测,第二次世界大战后,在军事科学、空间科学和工业自动化等部门的应用更加广泛。 就数学方法而言,平稳随机序列(见平稳过程)的统计分析,在理论上的发展比较成熟,从而构成时间序列分析的基础。时间序列分析的主要内容有:①频域分析。一个时间序列可看成各种周期扰动的叠加,频域分析就是确定各周期的振动能量的分配,这种分配称为谱或功率谱。因此频域分析又称谱分析。②时域分析。目的在于确定序列在不同时刻取值的相互依赖关系,或者说,确定序列的相关结构。③模型分析。20世纪70年代以后,应用最广泛的时间序列模型是平稳自回归——滑动平均模型(简称ARMA模型)。两个特殊情况是自回归模型和滑动平均模型。④回归分析。如果时间序列可表示为 确定性分量 与随机性分量之和 ,根据样本值(数据序列)来估计确定性分量及分析随机性分量的统计规律,属于时间序列分析中的回归分析问题。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条