说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 李群分解
1)  Lie group decompositions
李群分解
1.
The general time-dependent SchrOdinger equation with external perturbance needs to be resolved through Lie group decompositions.
而一般具有外加微扰作用力的含时薛定谔方程的求解需要通过李群分解
2)  Lie Group decomposition
李群的一般分解
3)  Lie group integration
李群积分法
1.
For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraint-invariant.
 针对耗散广义Hamilton约束系统,通过引入拉格朗日乘子和采用投影技术,给出了一种保持动力系统内在结构和约束不变性的李群积分法· 首先将带约束条件的耗散Hamilton系统化为无约束广义Hamilton系统,进而讨论了无约束广义Hamilton系统的李群积分法,最后给出了广义Hamilton约束系统李群积分的投影方法· 采用投影技术保证了约束的不变性,引入拉格朗日乘子后,在向约束流形投影时不会破坏原动力系统的李群结构· 讨论的内容仅限于完整约束系统,通过数值例题说明了方法的有效性·
4)  Lie group analysis method
李群分析方法
1.
Symmetries similarity reductions and new exact solutions to the (2+1)-dimensional Boiti-Leon- Manna-Pempinelli (BLMP) equation are obtained by using Lie group analysis method,including rational solutions,hyperbolic function solutions,Jacobi elliptic function solutions and triangular periodic solutions The infinte conservation laws of the (2+1)-dimensional BLMP equation are found.
利用李群分析方法,得到了(2+1)维Boiti-Leon-Manna-Pempinelli(BLMP)方程的对称、相似约化和新的精确解,包括有理函数解、双曲函数解、雅克比椭圆函数解和三角周期解。
5)  decomposition group
分解群
1.
In the paper, We have discussed the problem of translation of extension of an algebraic number field and proved the property of existence of translation of extension for a given decomposition group.
讨论了代数数域的扩张平移问题 ,证明了对给定的分解群的扩张平移的存在性 ,加强了 Artin的一个存在性定理的结
2.
In this paper, We have discussed the problem of the relation between the decomposition groups which have been established before the translation of the extension of an algebraic number field and after.
主要讨论了代数数域的扩张平移之前与扩张平移之后的分解群间的关系问题 ,以及素理想分解问题 。
6)  decomposer community
分解群落
补充资料:过李群玉故居
【诗文】:
讦直上书难遇主,衔冤下世未成翁。
琴尊剑鹤谁将去,惟锁山斋一树风。



【注释】:



【出处】:
全唐诗:卷653-20
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条