1) multi-independent variable
多个自变量
1.
On the research region of multiple regression, it is the emphasis on how to use multi-independent variable screening.
在研究多元回归问题,如何进行多个自变量筛选问题,一直是工作关注的重点,本文通过对一个案例讨论,来介绍如何应用MINITAB软件中"Stat>Regression>"中"Regression、Stepwise和Best Subsets"的工具,判断潜在的根本原因(X s)和建立较好的数学模型。
2) variable argument
可变个数自变量
3) polynomial with two variables
两个变量多项式
1.
Computing formulas of an F polynomial of almost alternating rational links were given by discussing the properties of a polynomial with two variables and by using Lickorish s ways, that is, we used linear skein theory to study the properties of polynomial.
通过对两个变量多项式性质的讨论以及 Lickorish方法 ,给出几乎交错有理环链的F多项式的计算公式 。
4) Show multiple variables
显示多个变量
5) multivariate bootstrapping
多变量自举
6) multi variable
多元自变量
1.
In this paper, the self modeling regression model with shape invariance and multi variable is built up, its calculation is considered, and its application example with the education measure data is given.
将关于形状不变的自建模回归模型推广到多元自变量,解决了计算问题,并结合教育测量数据给出了实例。
补充资料:具有分布自变量的常微分方程
具有分布自变量的常微分方程
ifferential equations, ordinary, with distributed arguments
具有分布自变,的常微分方程l击肠,曰问冈.枷.,.宙-.别,,初山业幼h功目.奄团长”肠;及一巾中e琳四班a剐oe ypa-.e,,。。~ff~,e,apr,e。。M],县亨停着孪元的常微分方程(oIdj灿刁山价代泊回闪uations with devi-a石ng(山喇泊让d)盯卿山即匕) 联系自变量,未知函数及其导数,通常对自变量的不同值取值的常微分方程.例如: x‘(t)“ax(t一:),(l) x‘(t)“ax(kt),(2)其中常数a,T和k是给定的;方程(l)中的T和方程(2)中的t一kt是自变量的偏差(山丫政t沁ns),延迟恤如山山招)或滞后(h矛).还有带许多自变量偏差的更复杂的微分方程,这些偏差可以表成给定的函数(特别地,如果它们是常数,则方程常常被当作微分一差分方程(由晚比吐阁刁正免化你笼叫以沁朋))或者甚至依籁所录的解.还有一些零散论文研究未知函数依赖于多个自变量的带偏差变元的微分方程.带偏差变元的微分方程的首次出现与偏微分方程的形式解有关,以后由于对方程本身的研究又出现在几何问题中,后来又出现在各种应用中,主要是在自动控制理论(a uton叼ticcontiDlti峨,动中.带偏差变元的微分方程理论的系统形成开始于1949年. 带偏差变元的微分方程的定义允许所求的解(形如x”(x(t”)和它的积分的任何叠加;从形式上讲,这类带偏差变元的常微分方程包含了数学分析中所有的方程.但通常理解的带偏差变元的常微分方程是指常微分方程中普通的一类,在这类方程中引进了理论上有意义的自变量的偏差.这种方程有几个性质完全类似于常微分方程,而其他性质主要是新的. 方程(或方程组) x〔”)(:)=f(:;x(从,)(r一;,),…,x(用·)(t一;,))(3)(对方程组,x和f是向量),其中所有马妻O,如果~,。,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条