1) three-dimensional bimaterial
三维两相材料
2) bimaterial
两相材料
1.
By using Muskhelishvili complex function methods, the problem of bimaterial incline crack was induced to the solving of Cauchy singular integral equations, in which the unknown functions are the dislocation density functions.
采用 Muskhelishvili复变函数的方法 ,将两相材料倾斜裂纹问题归结为以裂纹表面位错密度函数为未知量的 Cauchy型奇异积分方程的求解 。
2.
By using the Muskhelishvili complex methods, the issue of interaction between bimaterial incline cracks was reduced to solve the Cauchy singular integral equations, in which the unknown functions are the dislocation density functions.
采用 Muskhelishvili复变函数方法 ,研究两相材料中两根倾斜裂纹应力强度因子的相互影响 ,将问题归结为求解一组 Cauchy型奇异积分方程 ,对倾斜裂纹端点的应力强度因子作了数值求解 。
3.
The problems of finite bimaterial plates with an edge crack along the interface are studied by using a generalized variation method.
研究两相材料有限板含单边界面裂纹的断裂力学特性,对不同的材料组合用广义变分法分析了不同尺寸试件和裂纹长度下的应力强度因子和弹性T项,讨论了材料特性对应力强度因子和弹性T项的作用。
3) bi-material
两相材料
1.
By using the Muskhelishivili complex methods, the basic stress solutions of the bi-material interface crack were worked out according to the basic stress solution of the bi-material incline crack, and then the limit analysis method was used to conclude the singular integral equations of the bi-material interface crack.
采用Muskhelishivili复变函数的方法,将两相材料中倾斜裂纹应力场基本解,直接退化得到两相材料界面裂纹的应力场基本解,并尝试性地采用极限分析方法导出了两相材料界面裂纹的奇异积分方程。
4) bimaterials
两相材料
1.
Firstly, the concept of finite-part and the point-force fundamental solutions for bimaterials with an interface bonded perfectly are used to formulate a system of hypersingular integral equations with displacement differences on crack surfaces as unknown functions.
讨论了拉伸载荷作用下平行于两相材料界面的椭圆平片裂纹问题 。
6) three dimensional materials
三维材料
补充资料:材料界面(见材料表面)
材料界面(见材料表面)
interface of materials
材料界面interfaee of materials见材料表面。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条