1) arbitary concentrated load
任意集中荷载
2) arbitrary loading
任意荷载
1.
One-dimensional nonlinear consolidation of underconsolidation clay under arbitrary loadings;
任意荷载下欠固结地基的非线性一维固结
2.
Based on the layered visco_elastic soil model, according to the Terzaghi s one dimensional consolidation theory, by the method of Laplace transform and matrix transfer technique, the problems about the consolidation of layered and saturated visco_elastic soils under arbitrary loading were solved.
针对成层粘弹性地基模型 ,运用Laplace变换及矩阵传递法求解了任意荷载下成层粘弹性地基一维变形问题 ,得到了频域内的通解 ,通过Laplace逆变换 ,即可计算成层粘弹性地基在任意荷载下的一维变形· Terzaghi一维固结理论解是本文的一个特例· 结合三层地基的算例 ,可以看到粘弹性地基的固结相对于弹性地基有个滞后过程 ,但随时间最终趋于一致 ;循环荷载下粘弹性多层地基固结时 ,其有效应力和变形都呈振荡增长 ,且不与荷载同步 ,而要相对滞后· 此外 ,通过一工程实例 ,对该方法的可靠性进行论证 ,以证明该法确能指导工程实
3.
By the method of Laplace transform and matrix transfer technique, according to the layered soil model, one dimensional consolidation of layered elastic soils under arbitrary loading has been studied in this paper.
针对成层弹性地基模型,运用Laplace变换及矩阵传递法求解了任意荷载下成层弹性地基一维固结问题,得到了频域内的通解,通过Laplace逆变换,即可计算成层弹性地基在任意荷载下的一维团结。
3) concentrated load
集中载荷
1.
Analysis of anti-collapse ability of casing under the action of concentrated load;
集中载荷作用下的套管抗挤能力分析
2.
In view of offshore drilling practice,a method has been derived for calculating the critical load on riser under the combined action of wellhead concentrated load and dead weight uniform load by assuming the drilling riser to be a pipe member with one end fixed and other end hinged and based on the principle of energy conservation and theory of elastic stability.
从海上钻井实际出发,假定隔水导管为一端嵌固、一端铰支约束的典型受力杆件,根据能量守恒准则和弹性稳定性理论,推导出了在有端部集中载荷及自重均布载荷联合作用下其临界载荷的计算方法,并对不变刚度结构和变刚度结构两种不同组合形式的隔水导管的临界载荷进行了实例计算与分析。
3.
in this paper, the reciprocal theorem is applied tO researchon the bending problem of set square with three clamped edges undera concentrated load acting at any of its POints, the accuracy solutionof this problem is given.
应用功的互等定理研究了在一集中载荷作用下三边固定三角形板的弯曲问题,给出了该问题的精确解。
4) concentrated loads
集中载荷
1.
The principle of minimum potential energy of mixed variables method is applied to solve the bending problem of the plate with four edges simply supported by elastic foundation under several concentrated loads.
应用混合变量法求解了弹性地基上四边简支厚矩形板在数点集中载荷作用下的弯曲,给出了六点作用不同集中载荷弹性基厚板的挠曲面方程和应力函数方程,并进行数值计算,将计算结果与有限元结果进行了分析对比。
2.
For the problem of a magnetoelectroelastic cone under concentrated loads (include torsional moment Mz leads to torsion, concentrated force Pz and point charge Q lead to compression, concentrated force Px and concentrated moment MN lead to bending) at its apex, the potential functions were constructed by a linear composition of a group o.
当磁电弹性材料特征根互异时,用5个势函数表示的通解出发,对圆锥顶端作用集中扭矩M_z的扭转、集中力P_z和点电荷Q的压缩、集中力P_x和集中力矩M_y的弯曲变形问题,用一些调和函数的线性组合分别构造了势函数,并根据边界条件求出了势函数中的待定系数从而确定势函数,再将势函数代入通解得到磁电弹性圆锥顶端作用集中载荷时的位移、电势、磁势、应力、电位移和磁感应强度的三维解析解。
5) concentrated load
集中荷载
1.
Behavior of inflection of RC beams with exposed tensile reinforcement under concentrated load;
集中荷载作用下受拉钢筋暴露的钢筋混凝土梁变形性能分析
2.
Analysis of remnant strength of RC beams with exposed tensile reinforcement under concentrated load;
集中荷载作用下受拉钢筋暴露的钢筋混凝土梁受弯性能分析
3.
Strength test of RC continuous slabs under concentrated load;
集中荷载作用下钢筋砼连续板的强度试验研究
6) concentrated loads
集中荷载
1.
An analysis of biaxial bending of reinforced concrete slabs with simply support under concentrated loads;
集中荷载下钢筋混凝土简支板双向受力性能分析
2.
The test results of interface slips distribution law of deformations of eight simplysupported steel-concrete composite beams under concentrated loads are presented in the paper.
报道了8榀集中荷载作用下钢-混凝土组合简支梁的滑移规律和变形的试验结果。
3.
in this paper, the calculating formulas and numerical tables are given for deflection and stress resultants of shallow spherical shell under four cases of concentrated loads.
本文给出了扁球壳在四种集中荷载作用下的位移和内力的计算公式及相应的数表,可以直接查用。
补充资料:ANSYS中在任意面施加任意方向任意变化的压力方法
在任意面施加任意方向任意变化的压力
在某些特殊的应用场合,可能需要在结构件的某个面上施加某个坐标方向的随坐标位置变化的压力载荷,当然,这在一定程度上可以通过ANSYS表面效应单元实现。如果利用ANSYS的参数化设计语言,也可以非常完美地实现此功能,下面通过一个小例子描述此方法。
!!!在执行如下加载命令之前,请务必用选择命令asel将需要加载的几何面选择出来
!!!
finish
/prep7
et,500,shell63
press=100e6
amesh,all
esla,s
nsla,s,1
! 如果载荷的反向是一个特殊坐标系的方向,可在此建立局部坐标系,并将
! 所有节点坐标系旋转到局部坐标系下.
*get,enmax,elem,,num,max
dofsel,s,fx,fy,fz
fcum,add !!!将力的施加方式设置为"累加",而不是缺省的"替代"
*do,i,1,enmax
*if,esel,eq,1,then
*get,ae,elem,i,area !此命令用单元真实面积,如用投影面积,请用下几条命令
! *get,ae,elem,i,aproj,x !此命令用单元X投影面积,如用真实面积,请用上一条命令
! *get,ae,elem,i,aproj,y !此命令用单元Y投影面积
! *get,ae,elem,i,aproj,z !此命令用单元Z投影面积
xe=centrx !单元中心X坐标(用于求解压力值)
ye=centry !单元中心Y坐标(用于求解压力值)
ze=centrz !单元中心Z坐标(用于求解压力值)
! 下面输入压力随坐标变化的公式,本例的压力随X和Y坐标线性变化.
p_e=(xe-10)*press+(ye-5)*press
f_tot=p_e*ae
esel,s,elem,,i
nsle,s,corner
*get,nn,node,,count
f_n=f_tot/nn
*do,j,1,nn
f,nelem(i,j),fx,f_n !压力的作用方向为X方向
! f,nelem(i,j),fy,f_n !压力的作用方向为Y方向
! f,nelem(i,j),fz,f_n !压力的作用方向为Z方向
*enddo
*endif
esla,s
*enddo
aclear,all
fcum,repl !!!将力的施加方式还原为缺省的"替代"
dofsel,all
allsel
在某些特殊的应用场合,可能需要在结构件的某个面上施加某个坐标方向的随坐标位置变化的压力载荷,当然,这在一定程度上可以通过ANSYS表面效应单元实现。如果利用ANSYS的参数化设计语言,也可以非常完美地实现此功能,下面通过一个小例子描述此方法。
!!!在执行如下加载命令之前,请务必用选择命令asel将需要加载的几何面选择出来
!!!
finish
/prep7
et,500,shell63
press=100e6
amesh,all
esla,s
nsla,s,1
! 如果载荷的反向是一个特殊坐标系的方向,可在此建立局部坐标系,并将
! 所有节点坐标系旋转到局部坐标系下.
*get,enmax,elem,,num,max
dofsel,s,fx,fy,fz
fcum,add !!!将力的施加方式设置为"累加",而不是缺省的"替代"
*do,i,1,enmax
*if,esel,eq,1,then
*get,ae,elem,i,area !此命令用单元真实面积,如用投影面积,请用下几条命令
! *get,ae,elem,i,aproj,x !此命令用单元X投影面积,如用真实面积,请用上一条命令
! *get,ae,elem,i,aproj,y !此命令用单元Y投影面积
! *get,ae,elem,i,aproj,z !此命令用单元Z投影面积
xe=centrx !单元中心X坐标(用于求解压力值)
ye=centry !单元中心Y坐标(用于求解压力值)
ze=centrz !单元中心Z坐标(用于求解压力值)
! 下面输入压力随坐标变化的公式,本例的压力随X和Y坐标线性变化.
p_e=(xe-10)*press+(ye-5)*press
f_tot=p_e*ae
esel,s,elem,,i
nsle,s,corner
*get,nn,node,,count
f_n=f_tot/nn
*do,j,1,nn
f,nelem(i,j),fx,f_n !压力的作用方向为X方向
! f,nelem(i,j),fy,f_n !压力的作用方向为Y方向
! f,nelem(i,j),fz,f_n !压力的作用方向为Z方向
*enddo
*endif
esla,s
*enddo
aclear,all
fcum,repl !!!将力的施加方式还原为缺省的"替代"
dofsel,all
allsel
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条