1) bi-dimension position sensitive
两维位置灵敏
1.
The technology and preliminary test results of Si bi-dimension position sensitive detector based on multi-strip structure fabricated by using planar technology were described in this paper.
描述了用平面工艺技术研制基于硅多条的两维位置灵敏探测器的制各工艺技术及性能测试初步结果。
2) Two-dimensional position-sensitive detector (PSD)
两维位置灵敏探测器
3) two-dimensional position sensitive
二维位置灵敏
1.
To meet the need of Beijing Synchrotron Radiation Facility(BSRF) to two-dimensional detectors,a big program supported by Chinese Academy of Sciences was initialized to develop the two-dimensional position sensitive X-ray GEM detector satisfied the diffraction and the dispersion experiments requirement for BSRF.
针对北京同步辐射(BSRF)对二维探测器的实际需求,研发能够满足衍射和散射实验要求的二维位置灵敏X射线气体电子倍增器是中国科学院重大科研装备研制项目。
4) position sensitivity
位置灵敏
1.
Two stage gas detector with position sensitivity;
两级放大的气体位置灵敏探测器
5) position sensitive
位置灵敏
1.
As to ordinary photomultiplier tube and two new-style photomultiplier tubes(micro channel plate photomultiplier tube and position sensitive photomultiplier tube),this paper introduces their configuration and operation principle.
以常规光电倍增管以及两种新型光电倍增管(微通道板光电倍增管和位置灵敏光电倍增管)为例介绍它们各自的结构和工作原理,并在此基础上对其特性进行分析和讨论,展示三代光电倍增管在结构、性能方面的超越。
6) one dimension position sensitive detector
一维位置灵敏探测器
补充资料:位置灵敏探测器
能给出入射辐射的位置信息的核辐射探测器。在核物理和粒子物理实验中,往往需要测量入射粒子或核反应产物的空间位置或角度。早期的实验多采用云室、核乳胶,或由多个计数管组成的探测器系统,用符合的方法来确定射线或粒子的入射方位。但这些方法获取数据的效率和精度都不高。近年来,一些新的位置灵敏探测器的出现,大大改进了实验技术,并使其应用范围逐步从核物理、粒子物理扩展到固体物理、生物、医学等其他许多领域。目前常用的位置灵敏探测器有如下一些主要类型。
核乳胶 早期大多采用核乳胶片作为磁谱仪焦面上的位置灵敏探测器。核乳胶片虽然具有两维响应,位置分辨本领好(微米量级)以及能长期保存实验事实等优点;但不能用来进行符合实验,也不容易用计算机实现数据获取和处理的自动化。
半导体位置灵敏探测器 一种半导体探测器,能同时定出粒子的位置和能量。
火花室 它利用在电离径迹上出现的火花放电现象来探测入射粒子的方位。早期用自动照相技术,把位置信息储存在感光底片上。以后改用火花放电发出的声响的传播时间和火花室的电信号来定位,其位置分辨为1mm左右。由于一次火花放电以后需要较长的清扫时间来清除电离碎片(约1ms),所以其计数率容量较低(每秒约103个事件)。
多丝正比室 是利用射线在阳极丝上产生的电离电子的雪崩信号实现定位的。定位精度决定于丝间距离,可优于1mm,其计数率比火花室高3个量级,不但在核物理和粒子物理实验中已成为一种重要的探测工具,在其他学科领域也被采用。例如,室中若充BF3或3He气体,就是一个中子位置灵敏探测器,可用于中子衍射研究(见多丝正比室)。
漂移室 是通过测量电离电子从产生地点运动到探测它的某个既定位置的漂移时间来实现定位的。漂移室的定位精度可达几十微米量级。读出方式较多丝正比室简单。
电阻丝正比室 在结构和放电机制上同普通正比计数器相似,但其中心阳极为电阻丝。在它的任一端观察到的雪崩脉冲的振幅和上升时间均同射线进入的位置有关。因此有两种定位方法:电荷除法──通过电脉冲的幅度同位置的关系来确定射线的位置。上升时间法──由探测器两端信号的上升时间差来定位。定位精度约1mm。
螺旋线阴极正比室 它的阴极是螺旋线,相当于连续的延迟线。雪崩信号传播到阴极两端的延迟时间差同射线的位置有关。定位精度约0.5mm。
位置灵敏气体闪烁正比计数器 它是通过测量原始电离引起的第一次闪光和电离电子漂移到光导区的第二次闪光之间的时间来确定射线的位置。它有能量分辨好、计数率高、探测器面积大以及可以探测能量小到25eV的射线等优点。
核乳胶 早期大多采用核乳胶片作为磁谱仪焦面上的位置灵敏探测器。核乳胶片虽然具有两维响应,位置分辨本领好(微米量级)以及能长期保存实验事实等优点;但不能用来进行符合实验,也不容易用计算机实现数据获取和处理的自动化。
半导体位置灵敏探测器 一种半导体探测器,能同时定出粒子的位置和能量。
火花室 它利用在电离径迹上出现的火花放电现象来探测入射粒子的方位。早期用自动照相技术,把位置信息储存在感光底片上。以后改用火花放电发出的声响的传播时间和火花室的电信号来定位,其位置分辨为1mm左右。由于一次火花放电以后需要较长的清扫时间来清除电离碎片(约1ms),所以其计数率容量较低(每秒约103个事件)。
多丝正比室 是利用射线在阳极丝上产生的电离电子的雪崩信号实现定位的。定位精度决定于丝间距离,可优于1mm,其计数率比火花室高3个量级,不但在核物理和粒子物理实验中已成为一种重要的探测工具,在其他学科领域也被采用。例如,室中若充BF3或3He气体,就是一个中子位置灵敏探测器,可用于中子衍射研究(见多丝正比室)。
漂移室 是通过测量电离电子从产生地点运动到探测它的某个既定位置的漂移时间来实现定位的。漂移室的定位精度可达几十微米量级。读出方式较多丝正比室简单。
电阻丝正比室 在结构和放电机制上同普通正比计数器相似,但其中心阳极为电阻丝。在它的任一端观察到的雪崩脉冲的振幅和上升时间均同射线进入的位置有关。因此有两种定位方法:电荷除法──通过电脉冲的幅度同位置的关系来确定射线的位置。上升时间法──由探测器两端信号的上升时间差来定位。定位精度约1mm。
螺旋线阴极正比室 它的阴极是螺旋线,相当于连续的延迟线。雪崩信号传播到阴极两端的延迟时间差同射线的位置有关。定位精度约0.5mm。
位置灵敏气体闪烁正比计数器 它是通过测量原始电离引起的第一次闪光和电离电子漂移到光导区的第二次闪光之间的时间来确定射线的位置。它有能量分辨好、计数率高、探测器面积大以及可以探测能量小到25eV的射线等优点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条