说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性随机演化
1)  Non-linear stochastic evolution
非线性随机演化
2)  non-linear random inversion
非线性随机反演
1.
Study and application of seismic phase-controlled non-linear random inversion;
地震相控非线性随机反演研究与应用
3)  seismic nonlinear random inversion
地震非线性随机反演
1.
Research on application of seismic nonlinear random inversion to reservoir prediction in the thin sandstone of continental deposits
地震非线性随机反演方法在陆相薄砂岩储层预测中的应用
4)  randomness of evolution
演化随机性
5)  nonlinear evolution
非线性演化
1.
The process of evolution, especially that of nonlinear evolution, of C-type instability of laminar-turbulent flow transition in nonparallel boundary layers are studied by means of a newly developed method called parabolic stability equations (PSE).
提出用抛物化稳定性方程(PSE)新方法,研究非平行边界层从层流向湍流转捩的C型失稳的演化过程,特别是非线性演化问题。
2.
Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE).
基于抛物化稳定性方程,研究了边界层中TS波及其高阶谐波的线性和非线性演化问题。
3.
The nonlinear evolution problem in nonparallel boundary layer stability was studied.
研究对非平行边界层稳定性有重要影响的非线性演化问题 ,导出与其相应的抛物化稳定性方程组 ,发展了求解有限振幅T_S波的非线性演化的高效数值方法· 这一数值方法包括预估_校正迭代求解各模态非线性方程并避免模态间的耦合 ,采用高阶紧致差分格式 ,满足正规化条件 ,确定不同模态非线性项表和数值稳定地作空间推进· 通过给出T_S波不同的初始幅值 ,研究其非线性演化· 算例与全Navier_Stokes方程的直接数值模拟 (DNS)的结果作了比较
6)  stochastic linearization
随机线性化
1.
An extended Kalman filtering (EKF) algorithm was used to estimate and correct the INS errors by linearizing the geomagnetic anomaly surface with stochastic linearization method,and taking the measurement of the geomagnetic anomaly intensity as the observation.
对地磁异常值与位置之间的非线性函数关系进行了随机线性化,将地磁异常测量值直接作为观测量,采用扩展卡尔曼滤波技术实现地磁异常测量信息与惯性导航信息的融合,估计并校正了惯性导航系统导航误差。
补充资料:半导体非线性光学材料


半导体非线性光学材料
semiconductor nonlinear optical materials

载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条