美国著名数学家波利亚(1887~1985)在名著《数学与猜想》—书中提出了以下论证推理模式(ⅰ)与尝试推理模式(ⅱ)。
波利亚的论证推理模式(ⅰ)极为清晰地告诉我们:要推翻一个结论,只需举一个反例就足够了!
论证可以正面推证,又可以反例推证。反例需要经验的积累,需要尝试的提炼,下面是令中国人自豪的一个例证。
1979年,中国科学技术大学年轻的研究生史松龄,有力地举出了一个反例,推翻了苏联科学院院士彼得罗夫斯基为解决希尔伯特第16问题而得出的重要结论:“二次代数系统构成的微分方程组(简称ed,其极限环至多只有3个。”
这个结论,彼得罗夫斯基于1955年得出,在世界数坛统治了四分之一世纪之久,可是一夜之间,竟被史松龄举出的反例(e2至少出现4个极限环)所推翻。
可见,反例推证有时会收到惊人的功效!
波利亚的尝试推理模式(ⅱ),可以进一步深化,变为更为一般的形式。丰富的经验,可以使尝试变得更加有的放矢。在模式(ⅱ′)中,选取“本身很不像是可靠的”命题加以论证,将能得“a极为可靠”的结论。
下面是令人难忘且具历史意义的有趣例子。
瑞士著名数学家雅·伯努利(1654~1705)生前曾遗憾地提出:“假如有人能够求出我所不知道的,自然数平方的倒数之和并把它通知我,我将不胜感激。”
雅·伯努利逝世后,他弟弟约·伯努利(1667—1748)的学生——数学家欧拉把上式计算到小数点后第六位,即1.644934,并猜测它等于。
之后,欧拉采用了独特的方法:选择类似于韦达定理的思路,并应用于有无穷多个根的方程,得到了竟然使他的猜测变得“极为可靠”的结论。
然而,“极为可靠”毕竟不是最后结论,是真理还是谬误还得接受现实的挑战与历史的考验。
不过,波利亚的模式(ⅱ)却可使猜测的信念更为牢靠、坚定,逼近最终目标将是指日可待i类似于欧拉猜想的,还有世人皆知的哥德巴赫猜想,依据波利业推理模式(ⅱ)。
200多年来,世界优秀数学家艰苦卓绝的努力已达到了(1+2)的高峰,离抵达顶峰摘取“皇冠上的明珠——(1+1)”只有一步之遥了。
由此可见,波利亚的推理模式确是一条探求科学真谛的重要途径,它既可能会支持已有的经验与信念,也甚至会改变着人类的经验与信念。