说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非定量不确定性
1)  non quantificational uncertainty
非定量不确定性
1.
Based on Evidential Theory and an improved Genetic Algorithm(Multiple Population GA), a new transmission network expansion planning method taking account of non quantificational uncertainty is presented.
应用证据理论和多种群遗传结构对常规遗传算法作了改进 ,提出了一种计及非定量不确定性的电网扩展规划方法 。
2)  nonlinear uncertainty
非线性不确定性
1.
Robust H_∞ control for time-delay systems subject to nonlinear uncertainty;
非线性不确定性时滞系统的鲁棒H_∞控制器设计
2.
Robust stability criteria for neutral system with time delay and nonlinear uncertainty
带有时滞和非线性不确定性的中立系统的鲁棒稳定性条件
3.
A delay-dependent robust H∞ state feedback control is designed for a class of nonlinear uncertainty linear time-delay systems with the input delay.
针对一类带有输入时滞的非线性不确定时滞系统,基于适当形式的Lyapunov泛函,利用线性矩阵不等式(Linear matrix inequation,LMI)方法,讨论了时滞相关型鲁棒H∞状态反馈控制器设计问题,其中非线性不确定性满足增益有界条件,且控制器存在的充分条件由线性矩阵不等式的形式给出。
3)  nonlinear uncertain
非线性不确定性
4)  mismatched uncertainty
非匹配不确定性
1.
Quadratic stabilization and asymptotic tracking for a class of composite systems with mismatched uncertainty;
一类具有非匹配不确定性组合系统的二次镇定与渐近跟踪
2.
For the systems with mismatched uncertainty,the design of robust sliding surface is given.
首先,对于具有非匹配不确定性的系统,基于线性矩阵不等式技术给出鲁棒滑动模面的设计方法。
3.
RBF neural networks are used to identify the uncertainty of the system, then nonlinear missile control systems are designed using backstepping and robust control techniques which deal with the mismatched uncertainty of the system successfully, the differential damp terms are introduced into the fictitious control terms that improve the transient performance of the system effective.
应用全调节 RBF神经网络在线辨识系统中存在的不确定性 ,利用反演和鲁棒控制技术设计了导弹控制系统 ,成功地处理了非匹配不确定性 ,并在虚拟控制中引入了微分阻尼项 ,有效地改善了系统动态性能。
5)  uncertain nonlinearities
不确定非线性项
1.
A smooth robust adaptive controller is developed to compensate for the nonlinear dynamic friction and uncertain nonlinearities in the precision turntable system.
为了抑制不确定非线性项,加入了无抖振滑模控制项。
6)  mismatched uncertainties
非匹配不确定性
1.
Based on combination of reference state,backstepping design and variable structure control method,the proposed approach can provide robust output tracking even in the presence of mismatched uncertainties and unknown disturbance.
针对一类三角结构非匹配不确定性非线性系统,结合参考状态、反演设计和变结构控制方法,研究了其在非匹配不确定性和未知干扰下的跟踪控制问题,提出了状态参考反演变结构控制策略,设计的状态参考反演变结构控制器实现鲁棒输出跟踪,闭环系统在有限时间进入滑动模态。
2.
The mismatched uncertainties are overcome by using backstepping.
针对一类非匹配不确定性的线性系统 ,基于块控原理 ,提出了一种变结构控制设计方法 。
补充资料:非确定性
      理论计算机科学中的一个重要概念。各种计算机器模型(自动机),在每一时刻,根据当时的状态和输入,若机器的动作可唯一确定时,则称机器为确定性的;若有多个动作可供选择时,则称机器为非确定性的。任意一种自动机,按其动作的确定程度,大体可分为确定的和非确定的两类。在对非确定性的研究中,一个核心课题就是非确定性能否增加机器的计算能力。具体说,对同一类自动机,确定型和非确定型机器在计算能力方面有没有区别?是什么关系?这类问题因其在理论上和实践中的重要意义而受到普遍重视。其中有些问题至今尚未解决,成为理论计算机科学中重要的悬案,NP=?P问题就是一个突出的例子。
  
  一个单带图灵机,由一个有限控制器、一条输入带和相应的读写头组成。图灵机的动作是由有限控制器的状态和读写头扫视方格中的符号,依一定规则来定的。每一动作包括:改变机器的状态;在读写头扫视的方格中打印一个符号,以代替原来的符号;读写头向左或向右移一个方格。对于给定的状态和读写头读到的符号,图灵机的下一动作可能是唯一确定的,也可能有有穷多个动作可供选择。如果对于任何状态-符号对,下一动作都是唯一的,这种机器称为确定型单带图灵机;如果有有穷多个(包括零个或一个的情形)可以任意选择的下一动作,且规定对于给定的输入,只要在所有可能的动作序列中有一个序列导致接受状态,机器就接受其输入,这种机器就称为非确定型单带图灵机。对于确定型和非确定型的其他类型自动机,均可以类似地给出定义。
  
  对于同一类型的自动机,确定型可以看作是非确定型的特殊情形。因此,非确定型的计算能力一般说应比确定型的强。然而是否真强,则取决于所讨论的自动机的类型。从自动机接受语言(见形式语言理论)的能力来说,对于有限自动机,确定型机器和非确定型机器接受的语言类完全一样,都是正规集合。对于下推自动机,确定型机器接受的语言类(确定的上下文无关语言)是非确定型机器接受的语言类(上下文无关语言)的真子类。例如,L={0i1j2k|i=j或j=κ}就是一个属于后者而不属于前者的语言。对于线性有界自动机,确定型机器和非确定型机器接受能力是否相等的问题,至今尚未解决,这就是著名的"LBA问题"。对于图灵机,已经证明确定机器与非确定机器具有相同的接受能力,它们所接受的语言类都是递归可枚举集合。
  
  在计算复杂性理论中不仅考虑能不能计算的问题,还考虑计算时耗费资源(时间、空间等)的数量。在图灵机的情况下,如考虑资源界限,则对计算能力问题的回答便不一样。例如,当考虑多项式空间界限时,确定型图灵机接受的语言类PSPACE和非确定型图灵机接受的语言类 NPSPACE是相同的。而当考虑多项式时间界限时,就产生了著名的"NP=?P问题"。
  
  NP=?P问题  确定型图灵机在多项式时间内接受的语言所组成的类,记作P;非确定型图灵机在多项式时间内接受的语言所组成的类,记作NP。后者包含前者,但两者是否相同这个问题至今仍未解决。
  
  关于NP=?P问题的研究,大体有四方面工作:借助归约方法进行的NP完全性理论的研究;借助ORACLE(橡树岭自动计算机和逻辑机)进行的相对化语言类的研究;结合各种语言时间(空间)复杂性类进行的研究;细分非确定性、可证明 NP和P等其他方面的研究。在研究过程中,有人试图证明NP=P;更多的则猜测并力图证明NPP。有越来越多的人趋向于认为:NP=?P问题是独立于公理系统的,即在通常的公理化系统中,既不能证明NP=P,也不能否证它。
  
  这个问题的研究,在理论和实践两个方面都具有重要意义。从理论上说,它使人们对非确定性这样一个重要概念的本质,有了越来越深的认识。同时,随着NP=?P问题研究的深入,引出了许多新的理论问题,它们都程度不同地和NP=?P问题相关。一旦NP=?P问题获得解决,就会导致一系列理论问题的解决。
  
  其次,实践中的大量问题不是属于 P,就是属于NP。尽管图灵机能解决的问题都是可计算的,但普遍认为,只有属于 P的问题才是在计算机上现实可计算的。需要指数时间的问题虽然可计算,但因需要太多的时间,以致不被认为是现实可计算的。NP=?P问题就成为直接关系到NP中相当一批实际问题是否是"现实可计算的"这样一个大问题。实际上,若NP=P,那么NP中一切问题都是现实可计算的;但若NP厵P,NP中就将会有一批实际问题不是现实可计算的。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条