2) 3D magnetic field
三维磁场
1.
Calculation and optimization of the 3D magnetic field in an aluminum reduction cell(Ⅰ)——Application of the spline integral equation method to 3D magnetic field calculation;
铝电解槽三维磁场的计算与优化(Ⅰ)——样条积分方程法计算三维磁场
2.
the leakage reactance which is caused by the magnetic isolated segment has been calculated by solving the 3D magnetic field,the ingenuity design of rotor lamination displays a skew slot role.
通过求解三维磁场得出隔磁段所引起的漏抗,对转子冲片巧妙设计以起到斜槽的作用,在电机局部的设计计算上采用了辛普森算法和分层算法等方法,改进了潜油电机的设计方法并在此基础上设计制造了模拟实验样机,分析实验结果表明改进后的设计方法正确可行,对于提高此类电机的设计精度具有重要意义。
3.
The 3D magnetic field of two different schemes is analyzed with the ANSOFT finite element analysis software and a relatively ideal scheme with magnetic field distribution is obtained and the selected structure is improved.
利用ANSOFT电磁场分析软件对2种不同结构方案的减振器进行三维磁场有限元分析,得到磁场分布相对比较理想的一种方案,并对该结构方案进行了改进。
3) three dimensional magnetic field
三维磁场
1.
Finite element language and finite element program generation technique,which have been developed in recent years,are applied to the automatic generation of the FORTRAN finite element program system for solving three dimensional magnetic field problems,where vector potential is used as the describing function of the magnetic field.
本文运用最新发展起来的有限元语言和有限元程序自动生成技术生成了解三维磁场问题所需要的FORTRAN有限元程序系统,在此矢量磁位被用来作为磁场的描述函数。
4) three-dimensional magnetic field
三维磁场
1.
Analysis of three-dimensional magnetic field is the foundation work for optimum design of electromagnetic system.
其三维磁场分析是电磁系统优化设计的基础。
6) open boundary magnetostatic problems
开域静磁场
1.
Application of an FEM-BEM method based on boundary edge elements to open boundary magnetostatic problems
边界棱边元FEM-BEM法在开域静磁场计算中的应用
补充资料:电磁场的谱域法
借助傅里叶变换将电磁场边值问题转化为在(空间)谱域中求解的方法之一,适用于分层结构的边值问题。谱域法沿平行于分层界面的坐标量作傅里叶变换,使偏微分方程降维成常微分方程;使分层界面上的边界条件简化为对应的变换积分(值)。对于分层界面为介质-导体混合结构的情况(如微带线中导带所在的基片表面),谱域法绕过了该界面条件不适合直接用分离变量法求解的困难,从该常微分方程边值问题的谱函数解出发,经傅里叶反变换得出原边值问题中电磁场(位函数)的解。
谱域法仅适用于符合下列条件的分层边值问题:①介质只沿一维有分层变化,沿另外二维无界或受导体边界限制;②场域内只有平行于分层界面的零厚度导体片;③导体片的几何形状应该在场域边界所适合的正交坐标系中是可分离变量的。
用谱域法求解微带线的二维(准)静态场问题时,利用积分变换的帕斯伐尔定理可以直接根据标量位的谱函数计算线电容量。用谱域法求解微带和类微带线的二维亥姆霍兹问题时,可以计算各种混合模(HE模或EH模)的色散特性(见电磁波模式)。对于求解导带表面电流所必须的谱域格林函数表示式,则可按横向等效传输线的观点推导。用谱域法解三维问题时需要作二维傅里叶变换,可用于分析计算:微带线的不连续结构;具有简单形状(矩形、圆形等)贴片的微带天线;介质板上周期性贴片构成的光栅等。
在分析棱柱形导体对电磁波散射的问题中,谱域法也是高频近似的方法之一。它将远区的散射场按散射体上感应电流的傅里叶变换作谱域展开,然后解出该电流的谱函数,并得出散射场的谱域积分表达式。此式不仅可以经渐近展开导出与射线法一致的几何绕射公式,而且在影区边界处依然有效。
谱域法仅适用于符合下列条件的分层边值问题:①介质只沿一维有分层变化,沿另外二维无界或受导体边界限制;②场域内只有平行于分层界面的零厚度导体片;③导体片的几何形状应该在场域边界所适合的正交坐标系中是可分离变量的。
用谱域法求解微带线的二维(准)静态场问题时,利用积分变换的帕斯伐尔定理可以直接根据标量位的谱函数计算线电容量。用谱域法求解微带和类微带线的二维亥姆霍兹问题时,可以计算各种混合模(HE模或EH模)的色散特性(见电磁波模式)。对于求解导带表面电流所必须的谱域格林函数表示式,则可按横向等效传输线的观点推导。用谱域法解三维问题时需要作二维傅里叶变换,可用于分析计算:微带线的不连续结构;具有简单形状(矩形、圆形等)贴片的微带天线;介质板上周期性贴片构成的光栅等。
在分析棱柱形导体对电磁波散射的问题中,谱域法也是高频近似的方法之一。它将远区的散射场按散射体上感应电流的傅里叶变换作谱域展开,然后解出该电流的谱函数,并得出散射场的谱域积分表达式。此式不仅可以经渐近展开导出与射线法一致的几何绕射公式,而且在影区边界处依然有效。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条