1) Non-Selfexcitation
非自激系统
2) self-excited system
自激系统
1.
For the wind tunnel model,the coupling factors of buffeting are as follows:vortex of nozzle excites the helmholtz resonation of plenum and is coupled with the acoustic modal of full circuit,and the self-excited system,is resonated by the vortex of nozzle and the feedback of collector.
对于本模型风洞来讲,产生低频颤振的耦合因素主要是:喷口剪切层涡流激发了驻室Helmholtz共振;喷口剪切层涡流频率与全回路声学模态发生耦合;涡流剪切层及其收集口尖劈反馈共振,构成气流自激系统。
3) non-autonomous system
非自控系统,非自治系统
4) nonautonomous system
非自治系统
1.
In this paper,we have studied the existence of periodic solution for a class of nonautonomous system=φ(y)-F(x)+P(t) =-g(x)Sufficient condition to exist periodic solution for the system is obtained,and the results in are extended.
本文研究一类非自治系统x=φ(y)-F(x)+P(t)y=-g(x){的周期解的存在性,得出此系统存在周期解的充分条件,推广了文[4,5]的结论。
2.
This nonautonomous system has a quadratic fluid damping andparametric excitation, and the vortex excitation force is of very small amplitude.
该非自治系统具有流体平方阻尼力和中心激振。
5) integrating systems
非自衡系统
6) Non autonomous system
非自治系统
1.
The non autonomous system =f(t,x)+g(t,x)+H(t),x∈R n is discussed by the theory of matrix measure, and by mesns of the estimating of the solution of a linear system.
对n 维非自治系统 x= f(t,x) + g(t,x) + H(t)其中x ∈ Rn,f(t,x),g(t,x ) 是定义在 I(0 ≤ t< + ∞) × Rn 上的n 维连续向量函数,且f(t + ω,x) =f(t,x),g(t + ω,x) = g(t,x), H(t) 是 n × 1 矩阵且 H(t + ω) = H(t),常数 ω> 0,f(t,x) 对x 具有一阶连续的偏导数,g(t,x) 关于 x 满足 Lipschitz 条件。
补充资料:非自衡的非振荡过程
分子式:
CAS号:
性质: 有些过程在输入阶跃作用下,被控变量会一直上升或下降,直到极限值。
CAS号:
性质: 有些过程在输入阶跃作用下,被控变量会一直上升或下降,直到极限值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条