1) thresholding and Wiener filtering
阈值维纳滤波
1.
Finally,the wavelet-based image denoising by thresholding and Wiener filtering .
该算法首先设计两个具有方向性的二维不可分滤波器,然后通过小波变换简单有效地提取了图像六个方向上的方向信息,最后用带有椭圆型方向窗的小波域局部阈值维纳滤波算法对含噪图像进行去噪。
2) wavelet transformation(WT)
滤波阈值
3) threshold filter
阈值滤波
1.
In the paper,wavelet threshold filter algorithm is applied to gaseous infrared spectra analysis.
将小波阈值滤波算法应用于气体红外光谱分析中,以实际测量得到的气体透过率光谱为处理对象,首先完成了单组分测量光谱的小波去噪;其次,实现了多组分实测光谱的小波去噪与定量分析;最终可以获得气体浓度等重要的光谱分析结果。
2.
In chapter three, firstly, the principles of wavelet analysis and threshold filter are introduced.
主要概述了多分辨率分析、Mallat算法和该算法初始系数的计算以及阈值滤波时小波系数的估计方法和阈值的选择。
4) threshold filtering
阈值滤波
1.
A threshold filtering algorithm based on the region relativity of the wavelet coefficients;
基于小波系数区域相关性的阈值滤波算法
2.
Noise elimination of color comparison signal with threshold filtering of wavelet is introduced.
介绍了用小波阈值滤波方法实现比色测温信号的滤波消噪。
3.
sparsity_norm(sqrt) threshold filtering method was better than other methods in the MATLAB wavelet too.
然后,在MATLAB环境中采用一维小波变换和二维小波变换分别对地震映像资料进行去噪效果研究,进行阈值滤波试验结果表明Bal。
5) soft-thresholding filtering
软阈值滤波
1.
Wavelet analysis using soft-thresholding filtering in electromagnetic induced thermo-acoustic tomography system;
基于软阈值滤波的小波分析方法在微波致热超声成像系统中的应用
6) threshold zonal filtering
阈值带滤波
补充资料:维纳滤波
利用平稳随机过程的相关特性和频谱特性对混有噪声的信号进行滤波的方法,1942年美国科学家N.维纳为解决对空射击的控制问题所建立。维纳滤波是40年代在线性滤波理论方面所取得的最重要的成果。
滤波问题 用x(t)表示信号的真实值,n(t)表示噪声,其中t表示时间,则实际上观测到的信号是
z(t)=x(t)+n(t)滤波就是要从实测信号z(t)中尽可能滤掉噪声n(t),以得到真实信号x(t)的良好估值。数学上,滤波问题可以归结为根据z(t)来求出x(t)的最优估值憫(t)。
维纳滤波中,最优估值憫(t)是在均方误差的数学期望E[x(t)-憫(t)]2取极小意义下的一种估值。在假定信号过程x(t)与噪声过程n(t)为联合平稳和假定在半无限时间区间(-∞,t)内能获得z(t)的全部观测数据的前提下,维纳滤波给出了计算最优估值憫(t)的一种方法。
维纳滤波器 实现维纳滤波方法的系统或装置称为维纳滤波器。维纳滤波器在结构上是一个定常线性系统(见图),通过合理的设计可使其对噪声n(t)具有良好的过滤特性。当观测信号z(t)=x(t)+n(t)输入滤波器时,它的输出就是信号x(t)的最优估值憫(t)。
构造维纳滤波器的步骤 假设维纳滤波器的单位脉冲响应函数是h(t),则最优估值憫(t)的关系式为
如用Rxz(τ)表示x(t)和z(t)的互相关函数,Rzz(τ)表示z(t)的自相关函数,那么业已证明它们之间具有类似于上式的关系式
这个关系式称为维纳-霍夫方程。如果所讨论的各随机过程均具有各态历经性,则式中的Rxz(τ)和Rzz(τ)均是已知的。设计维纳滤波器的问题,可归结为从维纳-霍夫积分方程中解出未知函数h(t)。h(t)的拉普拉斯变换就是所要决定的维纳滤波器的传递函数H(s)。对于一般问题,维纳-霍夫方程往往不易求解。但当给定问题的随机过程的功率谱密度是有理分式函数时,H(s)的显式解就可比较容易地定出。根据求得的H(s)即可构造所需的维纳滤波器,而信号的最优估值憫(t)则可由相应关系式定出。
维纳滤波器的优缺点 维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声n(t)为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。
参考书目
钱学森、宋健:《工程控制论》(下册),科学出版社,北京,1981。
Y.W.Lee, Statistical Theory of Communication, John Wiley and Sons,Inc.,New York,1960.
滤波问题 用x(t)表示信号的真实值,n(t)表示噪声,其中t表示时间,则实际上观测到的信号是
z(t)=x(t)+n(t)滤波就是要从实测信号z(t)中尽可能滤掉噪声n(t),以得到真实信号x(t)的良好估值。数学上,滤波问题可以归结为根据z(t)来求出x(t)的最优估值憫(t)。
维纳滤波中,最优估值憫(t)是在均方误差的数学期望E[x(t)-憫(t)]2取极小意义下的一种估值。在假定信号过程x(t)与噪声过程n(t)为联合平稳和假定在半无限时间区间(-∞,t)内能获得z(t)的全部观测数据的前提下,维纳滤波给出了计算最优估值憫(t)的一种方法。
维纳滤波器 实现维纳滤波方法的系统或装置称为维纳滤波器。维纳滤波器在结构上是一个定常线性系统(见图),通过合理的设计可使其对噪声n(t)具有良好的过滤特性。当观测信号z(t)=x(t)+n(t)输入滤波器时,它的输出就是信号x(t)的最优估值憫(t)。
构造维纳滤波器的步骤 假设维纳滤波器的单位脉冲响应函数是h(t),则最优估值憫(t)的关系式为
如用Rxz(τ)表示x(t)和z(t)的互相关函数,Rzz(τ)表示z(t)的自相关函数,那么业已证明它们之间具有类似于上式的关系式
这个关系式称为维纳-霍夫方程。如果所讨论的各随机过程均具有各态历经性,则式中的Rxz(τ)和Rzz(τ)均是已知的。设计维纳滤波器的问题,可归结为从维纳-霍夫积分方程中解出未知函数h(t)。h(t)的拉普拉斯变换就是所要决定的维纳滤波器的传递函数H(s)。对于一般问题,维纳-霍夫方程往往不易求解。但当给定问题的随机过程的功率谱密度是有理分式函数时,H(s)的显式解就可比较容易地定出。根据求得的H(s)即可构造所需的维纳滤波器,而信号的最优估值憫(t)则可由相应关系式定出。
维纳滤波器的优缺点 维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声n(t)为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。
参考书目
钱学森、宋健:《工程控制论》(下册),科学出版社,北京,1981。
Y.W.Lee, Statistical Theory of Communication, John Wiley and Sons,Inc.,New York,1960.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条