2) quasi-static analysis
拟静力分析
3) quasistatic analytical method
拟静力学分析方法
1.
On the basis of traditional quasistatic analytical method, stiffness for angular contact ball bearing of aeroengine is studied.
在传统拟静力学分析方法的基础上 ,对航空发动机角接触球轴承刚度进行了研究。
4) static analysis
静力学分析
1.
Finite element static analysis of passenger car frame;
客车车架有限元静力学分析
2.
According to the static analysis,the parameter and fixing position of the spring were optimized.
弹簧在双曲柄四杆机构中的安装位置及其刚度对机器人前轮、中轮和后轮的受力都有影响,通过对双曲柄四杆机构的静力学分析优化了弹簧在四杆机构中的安装位置。
3.
Using ANSYS had static analysis for cylinder liner,the result showed it satisfying strength and stiffness require.
利用ANSYS对气缸套进行了静力学分析,计算结果表明其满足强度和刚度要求;对其进行了模态分析,得出了前6阶固有频率及其振型,为现场工作提供了理论指导;最后利用响应面法,采用Matlab软件计算出了其可靠度和对应的优化尺寸。
5) statics analysis
静力学分析
1.
Discussion about the statics analysis of capillarity's balance height;
毛细现象平衡高度静力学分析的教学探讨
2.
The factors which affect the grasping forces are analyzed by the statics analysis.
通过静力学分析得到了手指抓取力的表达式以及影响因素。
3.
By means of finite element method,this paper carried out a statics analysis on the complete appliance of three-ring reducer.
通过有限单元法,对三环减速器的整机进行了静力学分析,得到了三环减速器运转一个周期时,各个构件的作用反力和Von Mises应力变化规律。
6) analytical statics
分析静力学
1.
A theory of relativistic analytical statics of rotational systems;
转动系统的相对论性分析静力学理论
2.
A theory of relativistic analytical statics of translational systems are also constructed.
给出平动系统的相对论性虚功原理、平动系统的相对论性广义平衡方程以及平动系统的相对论性有势系广义平衡方程,从而建立平动系统相对论性分析静力学理论,用该理论研究作加速运动的高速宇宙飞船中的平衡问题,讨论该理论的普适性。
3.
A theory of relativistic analytical statics of variable angular velocity rotational system are constructed.
建立变角速度转动系统相对论性分析静力学理论,给出变角速度转动系统的相对论性虚功原理、变角速度转动系统的相对论性广义平衡方程,并证明变角速度转动系统中的力学体系一般为非有势系。
补充资料:潮汐静力学理论
自从I.牛顿用引潮力解释潮汐运动之后,潮汐动力的基本问题已经清晰,但用牛顿的理论直接研究海洋中的潮汐问题时,遇到非常复杂的数学困难。为此,必须将海洋所占据的空间区域,理想化为它具有简单的几何形状。1740年,D.伯努利从静力学平衡的角度出发,假设地球表面都被海洋所覆盖,而且海面在任何时刻都能够保持与重力和引潮力的合力处处垂直。这种理想化了的海洋潮汐,称为平衡潮。伯努利的这种学说,称为平衡潮学说。在此学说的基础上建立起来的一种潮汐理论,为潮汐静力学理论。这是继牛顿之后第一个提出的潮汐理论。
由此理论得到,地球表面由月球引潮力所产生的太阳平衡潮的潮高为
式中γ为地球半径的平均值,θ为月球的天顶距,M 为月球的质量,E 为地球的质量,D为月-地距离,哹 为月-地平均距离,m 为长度单位"米"。由太阳引潮力所产生的太阳平衡潮的潮高,也有类似的表达式。
如果在公式中取D =哹,且当θ=0°或180°时,=0.356米,而当θ=90°或270°时,=-0.178米,这表明平衡潮面在对着月球和背着月球的地点形成高潮,而在矢径与地球和月球的中心连线垂直的地点,形成低潮。对固定地点来说,由于地球自转和月球绕地球公转,月中天时刻每天约推迟50分钟,因此潮汐在一个太阴日(平均约24时50分)内通常有两次高潮和两次低潮,而且高潮和低潮发生的时刻,平均每天都推迟50分钟。
每逢朔日或望日,月球和太阳在天球上的经度差不多相等或相差180°,此时太阴潮和太阳潮叠加的结果,使当地的潮汐涨落在每半个月当中最大,称为大潮。若月-地距离和日-地距离都取平均值,则大潮时潮差的理论值可达0.78米。每逢上弦和下弦,太阳和月球在天球上的经度大致相差90°,此时因太阴潮和太阳潮互相削弱的效果最大,就使当地的潮汐涨落在每半个月当中最小,称为小潮。如果月-地距离和日-地距离都取平均值,则小潮时潮差的理论值可低达0.29米。实际上,对太阴潮和太阳潮来说,哹/D 的极大值分别为1.071和1.017,其立方分别为1.23和1.05,故太阴平衡潮的潮差最大可达0.657米,太阳平衡潮的潮差最大可达0.258米,两者之和应为0.915米,这是平衡潮的潮差能够达到的最大值。
大洋里许多岛屿的大潮差大多接近1米。例如:中国台湾东岸的火烧岛附近的大潮差约为 1米;夏威夷群岛火奴鲁鲁一带的最大潮差约为0.9米。 这都接近于从平衡潮理论算出的数值。但在陆架海区,由于潮波能量的集中,因而潮差往往比上述数字大得多。例如:中国杭州湾的澉浦,曾测得最大潮差为8.93米;北美洲芬迪湾的潮差在世界上最大,大约比杭州湾大一倍。
为了说明潮汐的周期和振幅的变化,在前面公式中引入月球天顶距θ与月球赤纬δ、当地纬度φ和月球时角A 的关系,则前面的太阴平衡潮公式可化为
对于太阳平衡潮来说,也有类似的表达式。此公式表明,太阴平衡潮具有 3种基本周期:半日周期、全日周期和长周期。就时角A而言,对地球上任何地点来说,由于月球和太阳都约有360°的时角变化,2A在一日之间有720°的变化,故第一项为半日周期项,它的振幅与cos2δ 成正比,而月球的δ 变化范围为0°~±28.6°,故cos2δ变化于0.77~1.00之间,因此对一定地点来说,太阴(太阳)半日潮的高(低)潮的时间主要决定于时角,但月-地(日-地)距离和月球 (太阳)赤纬对潮差也有一定的影响。式中第二项的时角为全日周期项,但是对于月球来说,sin2δ大约具有周期为半个月的变化,而对于太阳则具有周期为半年的变化。在赤纬为0°时,全日周期项为零;当赤纬不为零时,除赤道外,在地球上其他各点,半日潮和全日潮同时存在,叠加的结果,就出现日潮不等的现象。随着赤纬的增大,日潮不等的现象更加显著,在赤纬达极值时最为突出。公式的第三项不包括时角,仅由赤纬决定。对于月球,其周期约为半个月;对于太阳,则为半年。这都属于潮汐变化中的长周期部分。
平衡潮学说虽能定性地说明潮汐的周期变化和不等现象,但实际的海洋潮汐是一种复杂的波动现象(潮波),属于流体动力学范畴,其运动规律不是静力学理论所能阐明的。
由此理论得到,地球表面由月球引潮力所产生的太阳平衡潮的潮高为
式中γ为地球半径的平均值,θ为月球的天顶距,M 为月球的质量,E 为地球的质量,D为月-地距离,哹 为月-地平均距离,m 为长度单位"米"。由太阳引潮力所产生的太阳平衡潮的潮高,也有类似的表达式。
如果在公式中取D =哹,且当θ=0°或180°时,=0.356米,而当θ=90°或270°时,=-0.178米,这表明平衡潮面在对着月球和背着月球的地点形成高潮,而在矢径与地球和月球的中心连线垂直的地点,形成低潮。对固定地点来说,由于地球自转和月球绕地球公转,月中天时刻每天约推迟50分钟,因此潮汐在一个太阴日(平均约24时50分)内通常有两次高潮和两次低潮,而且高潮和低潮发生的时刻,平均每天都推迟50分钟。
每逢朔日或望日,月球和太阳在天球上的经度差不多相等或相差180°,此时太阴潮和太阳潮叠加的结果,使当地的潮汐涨落在每半个月当中最大,称为大潮。若月-地距离和日-地距离都取平均值,则大潮时潮差的理论值可达0.78米。每逢上弦和下弦,太阳和月球在天球上的经度大致相差90°,此时因太阴潮和太阳潮互相削弱的效果最大,就使当地的潮汐涨落在每半个月当中最小,称为小潮。如果月-地距离和日-地距离都取平均值,则小潮时潮差的理论值可低达0.29米。实际上,对太阴潮和太阳潮来说,哹/D 的极大值分别为1.071和1.017,其立方分别为1.23和1.05,故太阴平衡潮的潮差最大可达0.657米,太阳平衡潮的潮差最大可达0.258米,两者之和应为0.915米,这是平衡潮的潮差能够达到的最大值。
大洋里许多岛屿的大潮差大多接近1米。例如:中国台湾东岸的火烧岛附近的大潮差约为 1米;夏威夷群岛火奴鲁鲁一带的最大潮差约为0.9米。 这都接近于从平衡潮理论算出的数值。但在陆架海区,由于潮波能量的集中,因而潮差往往比上述数字大得多。例如:中国杭州湾的澉浦,曾测得最大潮差为8.93米;北美洲芬迪湾的潮差在世界上最大,大约比杭州湾大一倍。
为了说明潮汐的周期和振幅的变化,在前面公式中引入月球天顶距θ与月球赤纬δ、当地纬度φ和月球时角A 的关系,则前面的太阴平衡潮公式可化为
对于太阳平衡潮来说,也有类似的表达式。此公式表明,太阴平衡潮具有 3种基本周期:半日周期、全日周期和长周期。就时角A而言,对地球上任何地点来说,由于月球和太阳都约有360°的时角变化,2A在一日之间有720°的变化,故第一项为半日周期项,它的振幅与cos2δ 成正比,而月球的δ 变化范围为0°~±28.6°,故cos2δ变化于0.77~1.00之间,因此对一定地点来说,太阴(太阳)半日潮的高(低)潮的时间主要决定于时角,但月-地(日-地)距离和月球 (太阳)赤纬对潮差也有一定的影响。式中第二项的时角为全日周期项,但是对于月球来说,sin2δ大约具有周期为半个月的变化,而对于太阳则具有周期为半年的变化。在赤纬为0°时,全日周期项为零;当赤纬不为零时,除赤道外,在地球上其他各点,半日潮和全日潮同时存在,叠加的结果,就出现日潮不等的现象。随着赤纬的增大,日潮不等的现象更加显著,在赤纬达极值时最为突出。公式的第三项不包括时角,仅由赤纬决定。对于月球,其周期约为半个月;对于太阳,则为半年。这都属于潮汐变化中的长周期部分。
平衡潮学说虽能定性地说明潮汐的周期变化和不等现象,但实际的海洋潮汐是一种复杂的波动现象(潮波),属于流体动力学范畴,其运动规律不是静力学理论所能阐明的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条