1) catalytic absorption-stabilization system
催化吸收稳定系统
2) absorption and stabilization system
吸收稳定系统
1.
The revamping and optimization of the absorption and stabilization system of a 1.
介绍了金陵分公司1300kt/a重油催化裂化装置吸收稳定系统流程改造及优化措施,对流程改进前后的分离效果和能耗进行了对比。
2.
A Simulation of the absorption and stabilization system for two processes, cold flow feeding and cold-heat dual-flow feeding, in the FCC unit was carried out by using HYSYS simulative software of chemical engineering process.
应用HYSYS化工过程模拟软件对催化裂化装置吸收稳定系统进行模拟。
3.
This paper is a suggestion for ravamping the separation columns of FCC's absorption and stabilization system in Jujiang Petroleum Processing and chemical complex, attempting to provide an example of solving the problems of low separation efficiency of the system in existing refineries in China.
针对国内各炼厂酱遍存在的催化裂化装置吸收稳定系统分离效果较差的问题,以九江炼油化工总厂整个系统技术改造为背景,通过详细的流程模拟计算,对影响该系统分离效果的各个因素进行了分析。
3) absorption-stabilization system
吸收稳定系统
1.
Analysis of energy consumption and optimization in absorption-stabilization system;
吸收稳定系统能耗分析及优化
2.
The double column process flow is widely used in absorption-stabilization system of FCC unit and there are two different process flows for the "double column" process flow.
催化裂化装置吸收稳定系统目前广泛采用双塔流程,双塔流程中又存在两种不同工艺流程:多数流程吸收塔釜液流入平衡罐后再往解吸塔,但也有一些流程将该釜液直接送往解吸塔。
4) absorber stabilizer system
吸收稳定系统
1.
Simulations for the absorber stabilizer systems of FCC unit were conducted by using ASPEN PLUS simulator.
应用ASPENPLUS软件对催化裂解装置吸收稳定系统进行模拟。
5) Catalytic system steadiness
催化体系稳定
6) catalytic absorption
催化吸收
1.
The researches in the areas of catalytic distillation, catalytic adsorption and catalytic absorption are introduced respectively.
分别从催化精馏、催化吸附和催化吸收领域阐述了催化分离过程的研究现
补充资料:提高电力系统稳定二次系统措施
提高电力系统稳定二次系统措施
supple mental control measures for the enhancement of power system stability
t Igood一on(一x{torlg werld一r飞9 erel xltong euosh.提高电力系统稳定二次系统措施(Supplemental eontrol measures for the enhaneement ofpower System stability)通过自动装置的动作,控制与调整电力元件及设备的运行状态,以促进电力系统稳定运行的各种自动化措施总称。在近代电力系统中,为了充分利用输电线路的传输能力,增加廉价电能(如水能、核能等)的利用率,和在正常运行情况特别是在事故后运行情况下传输必要的功率,以及弥补由于各种原因造成的输电线路建设计划推迟带来的暂时问题,促进了这种自动化措施的广泛采用。恰当地运用这些措施,并能按预定要求动作时.可以取得极好的技术经济效益;但有些自动化措施的实施,可靠性较低,某些拒绝动作或误动作都将给电力系统带来混乱.也给调度管理与现场运行管理带来一定的复杂性。按系统稳定条件,这些措施可按静态稳定、暂态稳定和动态稳定分类。 提高静态稼定的二次系统措施同步发电机的励磁调节系统对配出的高压输电回路的静态稳定送电极限功率有直接影响。一般发电机都配置有自动励磁调节系统,并按反应机组机端电压的偏差值进行调节,调节系统的反应愈快,愈能及时随负荷变化修正机端电压,使输电回路得以保持较高的静态稳定送电水平,提高其极限送电功率。恰当地增加其他参量如电压变化率、电流量等作励磁控制的附加环节,可以进一步发挥励磁调节对提高系统静态稳定的效果。但过快的励磁调节速度,有可能诱发电力系统的动态不稳定,而需另加纠正措施。 提商哲态称定的二次系统措施主要包括:加速故障切除时间;切除发电机组;快速减火电机组原动机出力;输电线路自动重合闸;电气制动;发电机快速励磁和切集中负荷。 加速故障切除时间特别是加速发电厂配出的高压输电线路出口附近发生多相故障时的故障切除时间.是最根本也是远较其他措施更为有效的一种暂态稳定措施。它的作用在于直接减少发电机组在短路过程中获得的加速能量,从而防止破坏系统暂态稳定。快速切除故障.还可以为其他稳定措施发挥效能提供前提条件。如果故障切除时间为零,则短路故障的后果和正常运行时突然手动切除该故障线路的后果完全一样;而如果故障切除时间过长,不待短路故障切除,发电机组已与系统其余部分失去了同步,不再可能保持系统的暂态稳定。故障切除时间是继电保护动作时间与被控断路器动作时间之和。在22D kV及以上电压等级电力网中,故障切除时间最快已达l个工频周波左右,一般在2.5~5个工频周波间。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条