说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 变分法原理
1)  Reissner's moderately-thick plate theory
变分法原理
2)  variation principle
变分原理
1.
Application of the variation principle for calculating the force-energy parameters of rail rolling by a universal mill;
应用刚塑性体的变分原理求解钢轨万能轧制过程的力能参数
2.
The calculation of critical load of a compressive bar by direct method based on variation principle;
基于变分原理的直接解法求压杆的临界载荷
3.
Relativistic variation principle and dynamical equations of the rotational variable mass system;
转动变质量系统的相对论性变分原理和动力学方程
3)  variational principle
变分原理
1.
The variational principles for the analysis of electro-magneto-elastic material;
压电、压磁耦合弹性介质材料的变分原理
2.
A study of model analysis of anti deformation building based on generalized variational principle;
基于广义变分原理的抗变形房屋模型分析研究
3.
Variational principles and generalized variational principles on flow theory of plasticity;
塑性增量理论的变分原理和广义变分原理
4)  variational principles
变分原理
1.
Analogue to variational principles in solid mechanics, variational principles in heat con-duction are developed by the method of weighted residuals in this paper.
采用力学中建立最小势能原理和最小余能原理的加权余量法,分别得到了热传导中势能型与余能型的变分原理。
2.
By such technique the time derivative term in the coupled heat conduction equation is eliminated, so that the semi inverse method of eatablishing generalized variational principles proposed by He can.
应用半反推法及动态差分变换和初终值条件的新处理法 ,建立了各向异性线性材料大变形耦合热弹性动力学的经典型 (即不含卷积的非 Gurtin型 )统一变分原理族 ,从而为应用有限元法求解奠定了理论基础 。
5)  variation theory
变分原理
6)  variational structure
变分原理
1.
By means of variational structure and Z_2 group index theory,we obtain a estimate for number of multiple periodic solutions to second-order neutral functional differential equations (cx(t)+x(t-T)+cx(t-2r))"-x(t-T)+λf(t,x(t),x(t-T),x(t-2T))=0.
本文通过变分原理和Z_2不变群指标,得出下述二阶中立型泛函微分方程(cx(t)+x(t-T)+cx(t-2T))"-x(t-T)+λf(t,x(t),x(t-T),x(t-2T))=0周期解个数的下界估计。
2.
By means of variational structure and Z2 group index theory, we obtain multiple solutions of boundary value problems for second-order ordinary differential equations and lower bound estimate for number of the solutions.
本文利用变分原理和Z2不变群指标研究了二阶常微分方程边值问题的多重解。
3.
By means of variational structure and Z2 group index theory, we obtain multiple periodic solutions to a class of second-order functional differential equations of mixed typex"(t-τ)+f(t,x(t),x(t-τ),x(t-2τ))=0andx"(t-r)+λf1(t,x(t),x(t-τ),x(t-2τ))=x(t-τ
本文利用变分原理和Z2不变群指标研究了二阶混合型泛函微分方程x"(t-τ)+f(t,x(t),x(t-τ),x(t-2τ))=0和x"(t-r)+λf1(t,x(t),x(t-τ),x(t-2τ))=x(t-τ)多重周期解。
补充资料:变分原理(复变函数论中的)


变分原理(复变函数论中的)
omplex function theory) variational principles (in

  f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条