1) Universal Kriging interpolation
泛克里格插值
1.
Based on the analyses of the non-spatial statistical distribution pattern,the spatial trend fitting model and the semivariogram fitting model of the samples,then the parameters for the universal Kriging interpolation algorithm are set to calculate the soil equivalent shear wave velocity of points without the data of the bored holes.
在研究了样本的统计分布规律、空间趋势面拟合模型、变异函数拟合模型的基础上,设定泛克里格插值算法的各个参数,计算未知点的土层等效剪切波速。
2) kriging interpolation
克里格插值
1.
Their spatial distribution,which was obtained by Kriging interpolation,showed some similarities.
对研究区的部分土壤理化性质及土壤重金属的空间变异特性进行了分析,均表现出一定的空间变异性,并通过克里格插值得到它们的空间分布格局,表现出了一定的相似性,说明土壤理化性质与土壤重金属在空间分布上存在一定的相关性;通过对它们之间的空间相关性分析,表明克里格插值结果与实际计算结果是一致的,结果表明,土壤有机质、pH及各粒级含量土壤与Cu,Hg,As含量的相关性显著,与Zn,Pb和Cr为中等相关,且均为正相关,而与Cd的相关性不显著。
3) Kriging
克里格插值
1.
The paper discusses spatial distribution characteristics of metallogenic elements in the Huangbuling gold deposit by using statistics and Kriging method.
本文运用统计及克里格插值方法查明黄埠岭金矿成矿指示元素的分布特征,认为矿脉中除N i和Hg以外其余9个元素的均值明显高于克拉克值,元素的分散富集作用强烈,元素的垂向分带特征明显,可作为矿床深部含矿性评价的依据。
2.
Generally, Kriging is used to describe the spatial variability of soil nutrient property, but it has uncertainty.
将随机模拟值与克里格插值及实测值进行对比分析。
3.
Based on the theory of semivariogram and Kriging, in R environment, spatial variability of pH, available potassium, nitrate and ammonium in the soil of Zhenjiang Ruijing Park were analyzed, and spatial distribution maps were drawn in R.
在R环境中以半方差函数和克里格插值为基础,对镇江市瑞京园种植区土壤的pH值、有效钾、硝态氮和铵态氮含量进行了空间变异性研究,并绘制了空间分布图。
4) Kriging method
克里格插值
1.
Analysis of the spatial variability of rainfall in Lancang river basin based on kriging method;
澜沧江流域降水量空间分布的克里格插值分析
5) Kriging
克里格插值法
6) Kriging interpolations
克里格插值分析
补充资料:拉格朗日插值多项式逼近
拉格朗日插值多项式是一种最常见的多项式插值法,也是一种最常用的逼近工具。设??(x)是定义在区间[α,b]上的函数,又设x1,x2,...,xn是[α,b]上的n个互不相同的点。早在1795年J.-L.拉格朗日就证明:如果在点xK处的函数值yK=??(xK)(k=1,2,...,n)是已知的,则存在惟一的次数不高于n-1的代数多项式ln(??,x)使得
。倘若记,则ln(??,x)有表达??常称ln(??,x)为??(x)的拉格朗日插值多项式,为其结点组。若??(x)是个次数不高于n-1的代数多项式,则ln(??,x)=??(x)。ln(??,x)的几何意义是有且仅有一条n-1次代数曲线通过平面上预先给定的 n个横坐标互不相同的点。又称为拉格朗日插值的基本多项式。不论在理论上还是在实用上,拉格朗日插值多项式都是一种重要的逼近工具。假设??(x)在 [α,b]上存在n阶导数,则ln(??,x)逼近??(x)的偏差有这样的表达式式中ξ是[α,b]中某一与x有关的点。当然,这里对被逼近函数的要求太高,研究低度光滑函数的插值逼近是很重要的。
对于给定的结点组记 常称λn(x)为此结点组的勒贝格函数,λn为其勒贝格常数。如果记En-1(??)为次数不高于n-1的代数多项式对连续函数??(x)的最佳逼近值,则 而且有因此,应该选取使λn尽可能小的结点组,或说让诸结点在[α,b]上均匀分布是合理的。但事实并非这样,即使对于函数??(x)=|2x-α-b|,此时相应的ln(??,x)也不能实现对??(x)的逼近。至于选择其他结点组,仅要求函数连续也未必可行。因为G.费伯曾经证明,对于[α,b]上的任意一列结点组,n =1,2,...,都有[α,b]上的连续函数??(x),使得相应的拉格朗日插值多项式序列在[α,b]上不一致收敛于??(x)。此外,还有
因此,选择使勒贝格函数λn(x)关于 n的增长速度接近于ln n的结点组序列是人们所期望的。最常用的是在[-1,1]上取切比雪夫多项式Tn(x)=cos(n arccosx)的零点全体作为结点组。
其相应的勒贝格常数不超过 于是只要函数??(x)合乎迪尼-李普希茨条件则它的拉格朗日插值多项式ln(??,x)在n →∞时,在[-1,1]上就一致收敛于??(x)。这里 ω(??,δ)是??(x)的连续性模。用这种结点组的拉格朗日插值多项式逼近连续函数,其逼近度与最佳逼近值相比较,还有一个对数因子。如何修改插值多项式的构造以改善它的逼近性能,是人们所重视的问题。修改的办法很多,常用的是由С.Η.伯恩斯坦所提出的线性求和法。例如,令
x=cosθ (0≤θ≤π),定义
或令,定义如仍取Tn(x)的零点全体作为结点组,则存在绝对常数с,使得在[-1,1]上都有这说明,上述两种多项式对于低度光滑函数都有良好的逼近性能。
代替有限区间上的一致逼近,也可以考虑积分平均逼近,以及无限区间上的逼近。代替切比雪夫多项式的零点,可以考虑用雅可比多项式的零点作结点。而在周期的情况下,代替代数多项式的插值逼近自然以三角多项式的插值逼近为宜。此时,用周期区间的均匀分布的结点组是较合适的,可以建立类似于傅里叶级数部分和逼近函数的结果。
。倘若记,则ln(??,x)有表达??常称ln(??,x)为??(x)的拉格朗日插值多项式,为其结点组。若??(x)是个次数不高于n-1的代数多项式,则ln(??,x)=??(x)。ln(??,x)的几何意义是有且仅有一条n-1次代数曲线通过平面上预先给定的 n个横坐标互不相同的点。又称为拉格朗日插值的基本多项式。不论在理论上还是在实用上,拉格朗日插值多项式都是一种重要的逼近工具。假设??(x)在 [α,b]上存在n阶导数,则ln(??,x)逼近??(x)的偏差有这样的表达式式中ξ是[α,b]中某一与x有关的点。当然,这里对被逼近函数的要求太高,研究低度光滑函数的插值逼近是很重要的。
对于给定的结点组记 常称λn(x)为此结点组的勒贝格函数,λn为其勒贝格常数。如果记En-1(??)为次数不高于n-1的代数多项式对连续函数??(x)的最佳逼近值,则 而且有因此,应该选取使λn尽可能小的结点组,或说让诸结点在[α,b]上均匀分布是合理的。但事实并非这样,即使对于函数??(x)=|2x-α-b|,此时相应的ln(??,x)也不能实现对??(x)的逼近。至于选择其他结点组,仅要求函数连续也未必可行。因为G.费伯曾经证明,对于[α,b]上的任意一列结点组,n =1,2,...,都有[α,b]上的连续函数??(x),使得相应的拉格朗日插值多项式序列在[α,b]上不一致收敛于??(x)。此外,还有
因此,选择使勒贝格函数λn(x)关于 n的增长速度接近于ln n的结点组序列是人们所期望的。最常用的是在[-1,1]上取切比雪夫多项式Tn(x)=cos(n arccosx)的零点全体作为结点组。
其相应的勒贝格常数不超过 于是只要函数??(x)合乎迪尼-李普希茨条件则它的拉格朗日插值多项式ln(??,x)在n →∞时,在[-1,1]上就一致收敛于??(x)。这里 ω(??,δ)是??(x)的连续性模。用这种结点组的拉格朗日插值多项式逼近连续函数,其逼近度与最佳逼近值相比较,还有一个对数因子。如何修改插值多项式的构造以改善它的逼近性能,是人们所重视的问题。修改的办法很多,常用的是由С.Η.伯恩斯坦所提出的线性求和法。例如,令
x=cosθ (0≤θ≤π),定义
或令,定义如仍取Tn(x)的零点全体作为结点组,则存在绝对常数с,使得在[-1,1]上都有这说明,上述两种多项式对于低度光滑函数都有良好的逼近性能。
代替有限区间上的一致逼近,也可以考虑积分平均逼近,以及无限区间上的逼近。代替切比雪夫多项式的零点,可以考虑用雅可比多项式的零点作结点。而在周期的情况下,代替代数多项式的插值逼近自然以三角多项式的插值逼近为宜。此时,用周期区间的均匀分布的结点组是较合适的,可以建立类似于傅里叶级数部分和逼近函数的结果。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条