3) timing relationship
时序关系
1.
Second,the timing relationship between data acquisition and data transfer must be well handled.
设计USB数据采集系统的难点在于:其一,对USB传输、事务、信息包以及握手信号等相关概念的正确理解和应用;其二,正确处理好数据采集与数据传输之间的时序关系。
2.
In order to solve the problem of abnormity in 768 kbps high speed data transmission,at first a right timing relationship between synchronous data and timing circuits according with the international and domestic criterions is introduced.
针对768kbps高速数据传输异常的问题,根据国内外标准相关内容,确定了同步传输中数据与定时信号间的时序关系,通过与工程应用中实测波形的比较,发现设备接口间信号时序关系存在不匹配,据此对问题进行了分析,进一步查找原因,并使故障得到复现,最后为彻底排除隐患提出了解决措施。
3.
The theory of suppressing these noise types for CIS by using Correlated Double Sampling(CDS) is described,and the timing relationship between driving signals CP/SP that CIS required and sampling-holding signals SH1/SH2 are also analyzed,these signals are produced by using Complex Programmable Logic Device(CPLD).
介绍了接触式图像传感器CIS的简要原理和CIS中存在的噪声类型,阐述了用相关双采样来消除这些噪声的机理,分析了CIS要求的驱动信号CP、SP和采样保持信号SH1、SH2之间的时序关系,并用复杂可编程逻辑器件(CPLD)来产生这几个信号。
4) order relation
序关系
1.
A kind of order relations of interval grey number via kenning degree;
确认度意义下区间灰数的一种序关系
2.
Research of Rough Set Theory and Order Relation Based on Pansystems Methodology;
基于泛系的粗糙集模型和序关系研究
3.
With the equality relation and the order relation defined by the ε-bound method,data with the same value at a one-dimensional real-type node may be mistakenly merged to different nodes in an AVL tree and an illegal AVL tree may be produced with a multi-dimensional real-type node.
发现采用ε方法定义节点间相等关系和序关系,在一维实型节点情况下,相同数据有可能错误归并到树中的不同节点,而高维情况下可导致非法平衡二叉树。
5) partial ordering relation
偏序关系
1.
In terms of the concept of ordering relations of interval numbers based on probability,as well as the practical sense of vote models of Vague sets,the definition of a partial ordering relation of Vague values in the closed subinterval set is given,with which we provide the necessary proofs of some primary properties of Vague relations.
从基于可能度的区间数序关系的概念以及Vague集投票模型的实际意义两个方面,引入闭子区间集中Vague值的偏序关系的定义,并利用偏序关系证明了Vague关系的一些主要性质。
2.
A partial ordering relation is presented in the incomplete interval-valued information system(IIIS) with the purpose of classification,and practical approaches are given to reduce the partial ordering relation.
针对不完备区间值信息系统,提出了一种用于分类的偏序关系,并给出了计算这种偏序关系约简的实际操作方法。
3.
This paper builds modified object lattice by introducing two partial ordering relations ≤\' and ■\' and a new inter-section ∩\',followed by generating a concept lattice with the modified object lattice.
通过在对象集内引入两个偏序关系≤′和■′及一种新的交运算∩′来建立改进的对象格,然后通过此对象格产生概念格。
6) temporal relation
时序关系
1.
In the military multi-agent systems it need to analyses the dependent and temporal relations between the tasks or combat behaviors for working-out its programmings/plans,and so can get the correct behavior sequences to guarantee good coordination and aovid not success because of the possible error scheduling and conflicts.
在军事MAS(multi-agentsystem多自主体系统 )中制订规划 /计划时需要对任务和战斗行为相互间存在的依赖关系和时序关系进行分析 ,计算出可保障MAS中相互进行良好协作的行为序列 ,避免因可能发生的时序错误、冲突造成协作失败。
2.
Extended interval temporal logic(EITL) can model and reason about the temporal relations between nondeterministic intervals in discrete event systems where the duration of an action or event is indeterminate or unpredictable and only the low bound and up bound of the terminal time can be predicted.
该文在扩展时段时序逻辑的基础上提出了一种推理机制 ,这种推理机制基于时间 Petri网模型及基本不等式规则 ,可由一组已知的扩展时段时序关系推出一些未知的扩展时段时序关系 ,对不确定时间段内发生的事件及其相互关系具有较好的描述能力 。
3.
Compared to the definitions of concepts“Event”and“Temporal Relation of Events”from many researches, based on the specification of TimeML decide the specific direction of this research.
事件时序关系的研究在问答系统,文本提取等自然语言处理领域起着越来越重要的作用。
补充资料:良序集
良序集
well-ordered set
良序集【wen一咖ered set;即。皿e担op皿朋,e“noeM“o-翔cTOSO] 具有二元关系簇并且满足下列条件的一个集合尸: l)对任意x,夕6p,或x(y,或y(石 2)如果x簇夕并且夕簇x,那么x=夕: 3)如果x(y并且夕蕊:,那么x簇石 4)在任意非空子集X C=P中,存在一个元素“,使得对所有x‘x,a簇x. 于是,良序集是满足极小条件的全序集(totallyOrdered set). 良序集概念是由G.Cantor(【l」)提出的.自然数集对于自然顺序是良序集的一个实例.另一方面,实数区间【O,11对于自然顺序不是一个良序集.良序集的任一子集是良序的.有限个良序集的Descartes积对于字典序(le廊。graphic older)是良序的.一个全序集是良序的,当且仅当它不包含反同构于自然数集的子集(见偏序集的反同构(咖一isomorphismofpartia】】y oldered set)). 一个良序集尸的最小元素用零(符号0)表示.对于任意元素a‘尸,集合 [o,a)={x:X Ep,x极限元(Umit eler加nt). 比较定理(comparison此。~).对任意两个良序集p,和p:有且仅有下列情形之一成立:a)尸1同构于pZ;b)pl同构于p:的一个初始段;或者c)尸2同构于尸,的一个初始段. 如果选择公理(画om of choice)包含在集合论的公理中,那么可以证明,对任意非空集合可以赋予它一个序关系,使其成为一良序集(即任一非空集合是能够良序的).这个定理(称为Zerlldo定理(Zer-n祀10 lheorelll))事实上等价于选择公理.Zern犯10定理和比较定理构成了集合的基数之间的比较的基础.良序集的序型称为序数(ordinaln切mber)(见序型(order type:序数(ordin川nUmber)).【补注】在上面的定义中,条件3)(序关系的传递性)事实上是多余的:它从子集{x,y,艺}的最小元素的存在性得到. 有时一个良序集称为全良序集(totally weU一order-ed set),以反映次序关系是全序(total ordering)或线性序(linear order雌).见全序集(totally orderedset).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条