说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一般似然比(GLR)
1)  generalized likelihood ratio (GLR)
一般似然比(GLR)
2)  generalized likelihood ratio(GLR)
一般似然比
1.
Due to traditional single audio segmentation algorithm suffers from a large amount of redundancy change points, a hybrid approach for audio sequential segmentation in broadcasting based on generalized likelihood ratio(GLR) and Bayesian Information Criterion(BIC) is proposed.
针对传统单一音频分割算法中存在的冗余分割点过多问题,研究了一种基于一般似然比(GLR)和贝叶斯信息准则(BIC)相结合的广播音频顺序分割算法,提出了候选跳变点潜在区域的判断准则,并给出跳变点在潜在区域的检测方法,最后对检测到的跳变点进行校验。
3)  general Born approximation
一般Born近似
1.
The generalized screen(GS)method is a new one in this technique and developed on the bases of scattered theory, screen approximation and general Born approximation.
其中 ,广义屏法是近几年发展起来的一种新方法 ,它基于散射理论、屏近似和一般Born近似 ,具有较高的精度和效率 ,是条件稳定的。
4)  Likelihood ratio
似然比
1.
Multi-dimensional correlation test based on the probability integral translation and likelihood ratio
基于概率积分变换与似然比的高维相关性检验
2.
Discrete calculation of signal to noise ratio and likelihood ratio are discussed in detail,and one practical algorithm for the digital implementation of RPPT Detector is presented.
文章提出了高分辨率雷达目标随机参量脉冲串检测器的数字实现方法;详细讨论了离散条件下信噪比与似然比的计算,给出了RPPT检测器数字实现的一种实用算法。
3.
By making use of the notion of likelihood ratio and the approach of Laplace trans- form,a class of strong limit theorems represented by inequalities which call the strong deviation theorems are obtained.
研究了相依连续型非负随机变量序列的极限性质,利用似然比的概念和Laplace变换方法得到了一类强偏差定理,即用不等式表示的一类强极限定理。
5)  likelihood ratio order
似然比序
1.
This paper investigates the likelihood ratio order and the increasing convex (concave) order for exponential family of distributions.
主要讨论两个服从同一指数型分布族的随机变量x和y之间的似然比序,一般随机序和单增凸(凹)序,并得到了判别上述序成立的一些充分条件。
2.
In this paper, we investigate the likelihood ratio order, the usual stochastic order and he increasing convex (concave) order in Gamma family of distributions.
主要讨论两个服从Gamma分布Γ (α ,λ)的随机变量X和Y之间的似然比序 ,一般随机序和单增凸 (凹 )序 ,并得到了判别上述序成立的一些充分条件 。
3.
It is established the conditions to ensure the stochastic comparison of the Likelihood ratio order between the groups of random variables.
研究了两组随机变量列之间似然比序的随机比较 ,得到的结果推广了 Shaked 和 Shan-thikumar( 1 994)中的 Theorem1 。
6)  likelihood ratio ordering
似然比序
补充资料:似然比检验
分子式:
CAS号:

性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)=     p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xiθ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条