1) series BP algorithm
串联BP算法
2) dual-layer BP
串联BP
1.
Firstly,according to the dependencies of neighboring neural network output and secondary struc- ture which is determined by it s peptidc chain,we take dual-layer BP network as individual network and“pruning method”and“early stop”were used to avoid overfitting.
为了提高蛋白质二级结构预测精度,本文尝试采用一种基于串联BP网络集成的二级结构预测模型。
3) BP algorithm
BP算法
1.
Research on Bit Pressure Control System of Auto-drilling Based on BP Algorithm;
基于BP算法的自动送钻钻压优化控制技术研究
2.
The application of modified BP algorithm used in NO_X air pollution of WuHu cityl;
改进的BP算法在芜湖市NO_X大气污染中的应用
3.
Amelioration of BP algorithm and its application in expert system for electric arc furnace steel-making controlling;
BP算法的改进及其在电弧炉炼钢控制专家系统中的应用
4) BP arithmetic
BP算法
1.
Research on fuzzy neural network control of inverter spot-welding power supply based on BP arithmetic;
基于BP算法的逆变点焊电源模糊神经网络控制研究
2.
BP arithmetic FNN and an assistant prediction modelof sintering burn-through point;
BP算法的模糊神经网络及烧结终点辅助预测模型
3.
The Research of AHP Based on BP Arithmetic;
基于BP算法的层次分析法研究
5) Back-propagation algorithm
BP算法
1.
Research of particle swarm optimization algorithm comparison with back-propagation algorithm and genetic algorithm
粒子群优化算法与BP算法和遗传算法的比较研究
6) Back Propagation Algorithm
BP算法
1.
In this paper, one four-layer fuzzy neural network using the Back Propagation Algorithm and fuzzy logic was built to study the nonlinear relationships between different physical- chemical factors and the denseness of red tide algae, and to anticipate the denseness of red tide algae.
为研究各种理化因子与赤潮藻类浓度间的非线性对应规律和有效预测赤潮藻类浓度,构建了基于BP算法的一个四层模糊神经网络模型。
2.
The advantages and disadvantages of Back Propagation Algorithm (BP) and Genetic Algorithm (GA) are analysed, combination of the two algorithms forms GA-BP.
分析了遗传算法(GA)和BP算法的优缺点 ,将GA算法与BP算法有机地结合 ,形成了遗传BP算法。
3.
The back propagation algorithm of neural network is described in detail.
介绍了人工神经元网络的基本原理和 BP算法神经网络 。
补充资料:BP算法
分子式:
CAS号:
性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。
CAS号:
性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条