说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> LBG(训练序列算法)
1)  LBG (Linde Buzo Gray)
LBG(训练序列算法)
2)  Training sequence
训练序列
1.
FPGA implementation of frequency synchronization arithmetic in time domain based on training sequence;
基于训练序列的载波频率同步算法的FPGA实现
2.
An improved OFDM symbol synchronization algorithm based on training sequence;
一种改进的基于训练序列的OFDM符号同步算法
3.
Algorithm of channel estimation using special training sequence for MIMO-OFDM systems;
基于特殊训练序列的信道估计算法的研究
3)  training sequences
训练序列
1.
Algorithm analysis of timing synchronization for OFDM system based on training sequences;
基于训练序列的OFDM系统定时同步算法分析
2.
Large estimation range and precise estimation can be acquired by the new method by twice frequency offset estimation;moreover,date transmission efficiency will be improved without any demand for training sequences.
该算法通过两次频率偏移估计,可以同时获得大的估计范围和高的估计精度,而且对训练序列没有其他限制,可以提高系统数据传输效率。
3.
In this paper,we analyzed the channel estimation base on block-type training sequences for the typical UWB indoor channel model.
在典型的UWB室内信道模型下,分析基于块状训练序列的信道估计算法。
4)  LBG algorithm
LBG算法
1.
Application of CSLBG algorithm in multi-modal mixed identity authentication system;
CSLBG算法在多通道混合身份认证系统中的应用
2.
Fast LBG algorithm using new codeword splitting method
使用新的码字分割方法的快速LBG算法
3.
In the process of vector quantization,traditional LBG algorithm has the advantage of fast convergence,but it is easy to get the local optimal result, so the codebook designed by LBG is not surely optimal and the recognition performance will be influenced.
在矢量量化过程中,经典的LBG算法收敛速度快,但极易收敛于局部最优点,无法保证根据有限样本数据得到最优码本,并最终影响系统识别性能。
5)  LBG algorithm
LBG 算法
6)  short training sequences
短训练序列
1.
11a system,the coarse frame synchronization can be realized with auto-correlation posed by the periodicity of short training sequences,and the fine frame synchronization can be implemented using cross-correlation between local short training sequences and received signals.
11 a前导训练序列的周期性而产生的自相关来进行帧粗同步,利用本地短训练序列与接收信号的互相关进行帧细同步。
补充资料:BP算法
分子式:
CAS号:

性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条