说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 点集拓扑理论
1)  point-set topology theory
点集拓扑理论
1.
According to the application to spatial topological relationship of point-set topology theory, we also develop point-set topology in temporal relationship field and form the definition and description of temporal relationship.
借鉴点集拓扑理论在空间拓扑关系中的应用,把这一理论拓展到了时态拓扑关系的分析中,给出了时态拓扑关系的定义、描述和应用例子。
2)  point set topology
点集拓扑
1.
In the past, description on topological spatial relationship of GIS was based on basictheory of point set topology.
过去对GIS拓扑空间关系的描述均是基于点集拓扑学的基本理论,描述点、线、面、体间的覆盖、相邻、相交和相离等关系。
2.
In terms of point set topology and combination topology, the formal definition of 3D spatial features are described as orientable n pseudomanifolds(0≤ n ≤3),and it can be represented by complexes which is th.
阐述了三维空间实体语义概念及空间实体之间拓扑性质形式化描述的意义,以组合及点集拓扑理论为基础,给出了基于k-维伪流形的三维空间实体的语义定义。
3)  set topology
集论拓扑
4)  topological theory
拓扑理论
1.
Study on CRM Model and Algorithm Based on Customer Cluster and Topological Theory;
基于客户集群和拓扑理论的CRM模型与算法研究
5)  Topology [英][təu'pɔlədʒi]  [美][to'pɑlədʒɪ]
拓扑理论
1.
Evaluation on the rationality of organization structure by means of topology;
利用拓扑理论评价组织结构合理度
2.
Topology is more and more widely applied in the creative design of mechanism.
拓扑理论在机构创新设计中的应用越来越广泛 ,而在实际机构运动分析中 ,设计者往往采用传统的分析方法。
6)  topological degree theory
拓扑度理论
1.
Using Liapunov-Schmidt method and topological degree theory,we proved some results for the(existence) of periodic solutions of nonlinear functional differential equations.
利用Liapunov-Schm idt方法和拓扑度理论,将Mawhin关于常微分方程周期解的存在性结果推广到具有超前和滞后的泛函微分方程上。
2.
By using topological degree theory,the existence of solution to boundary-value problem of a class of fourth-order difference equations was discussed.
利用拓扑度理论讨论一类四阶差分方程边值问题解的存在性,得到该问题解的一个存在定理及其存在正解的充分条件。
3.
By applying the topological degree theory and some techniques of inequality,the uniqueness of the existence for the equilibrium point of the interval neural networks with mixed delays is worked out and the condition for global robust exponential stability is presented.
利用拓扑度理论和不等式技巧给出了一个混合时滞区间神经网络平衡点的存在唯一性以及全局鲁棒指数稳定性的条件。
补充资料:点集拓扑

点集拓扑学(point set topology),有时也被称为一般拓扑学(general topology),是数学的拓扑学的一个分支。它研究拓扑空间以及定义在其上的数学构造的基本性质。这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。它的表述形式大概在1940年左右就已经成文化了。通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条