1) summation cipher
求和序列
2) column sum method
列求和法
3) sum of seguence
数列求和
1.
Owing to position in the mathematics of few row at senior high school and developing student\'s logic reasons ability and the reasonableness thinking level mathematics teaching should strengthen the teaching of sum of seguence.
介绍了数列求和的几种常用方法,这些方法可以使学生在分析问题和解决问题时,从整体出发,抓住问题的本质,同时可以简化解题步骤,减少运算量,使问题可以快速、准确地得以解决。
4) consensus sequence
调和序列
5) the harmony array
和声序列
6) Zero-sum sequence
零和序列
补充资料:Abel-Poisson求和法
Abel-Poisson求和法
Abd - Poisson summation method
A侧一P成胎..求和法【Ab日.lb映明.,.n口.位扣.暇月阂d;A反.一n外曰期.Mer叭cy朋即此all”,] Fourier级数求和法之一函数f任L fo,27r]的Fourier级数在点中上按Abel一Poisson法是可和的(summable by Abel一POisson method),其和为数S,如果 p少犯。f(。,帅·:,其中 ao.畏, f(p,中)=份+乞(a*cosk价+bk sink毋)沪, J、r’丫‘2’昌、一‘一’一r’一‘一’一‘’r’ f(n,叫·士少、t)不痣丽‘(*)如果feC(0,2幻,则对于lz}二lP日,}<1,右边的积分是调和函数,正如5.Poisson所证明的,它是关于圆盘的Diri创et问题的解.所以,Abel求和法(Abel sum-mation method)当应用于Fourier级数时称为Abe卜Poisson求和法,而积分(*)称为PdSS.,积分(Pois-son integral). 如果(P,叻是单位圆内一点的极坐标,则可以考虑当点M(p,价)不是沿半径或切线,而是沿任意路径趋向于边界圆上的一点时函数f印,初的极限.在这种情况下,Schwarz定理(s chwarz theorem)成立:如果f属于L[O,2司且在点钱上是连续的,则、,,恕:.,。)f(。,,)一,伸。)而与点M(p,甲)沿怎样的路径趋向于点P以,叽)无关,只要这一路径保持在单位圆内.【补注】与上述Schwarz定理有关的一个定理是Fatou定理(凡tou theorem):如果f“L[0,2二],则对于几乎所有职。,当M(p,叻沿单位圆内而不与单位圆相切的路径趋向于P(1,肠)时,有 (,.,黔:,,。)f(。,,)一了(,。).见[A2],Pp.1 29一1 30.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条