1) multifactor time series
多因素时间序列
1.
The multifactor time series prediction is an important part of Data Mining, which describes the potential relationships between prediction indexes and influential factors, and has a vast application in many fields.
多因素时间序列预测是数据挖掘的一个重要研究内容,描述预测指标与影响因素之间存在的潜在关系,被广泛应用于许多领域。
2) multi-factor time series method
多因素时间序列法
1.
Based on the analyses of the deficiency in practical use of present road accident prediction methods,the multi-factor time series method is presented and the multi-factor time series model for forecasting road accidents is built in this paper.
针对现有道路交通事故预测方法在实际应用中的不足,引入多因素时间序列法,建立了道路交通事故多因素时间序列宏观预测模型。
4) multivariate time cause-effect series model
多元时间因果序列模型
5) multiple time series
多时间序列
1.
A new model for mining multiple time series based on temporal logic
基于时态逻辑的多时间序列挖掘模型
6) time series of elements
元素时间序列
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条