1) Semi-GAS
半全局渐近稳定
2) global asymptotic stability
全局渐近稳定性
1.
Analysis on global asymptotic stability for a kind of extended BAM models;
一类推广的BAM模型的全局渐近稳定性分析
2.
Global asymptotic stability of impulsive delay differential equations;
脉冲时滞微分方程的全局渐近稳定性
3.
We obtained the boundary of its positive semi-trajectory with positive initial values,the global asymptotic stability of its equilibrium,the existence of its limit cycles.
得到它的解的有界性、正平衡点的全局渐近稳定性和极限环的存在性。
3) global stability
全局渐近稳定性
1.
Mathematical analyses of the model equations with regard to invariance of non-negativity,nature of equilibria and global stability are analyzed.
分析了系统的非负不变性、边界平衡点性质及全局渐近稳定性 。
2.
The invariance of non-negativity,nature of equilibria and global stability of the system are analyzed.
报道了一类带有扩散和时滞的捕食与被捕食系统,分析了系统的非负不变性,边界平衡点性质及全局渐近稳定性。
3.
This paper studies nonnegative equilibriums for prey-predator models with Holling-Ⅱ functional response and discusses the global stability of nonnegative equilibriums when the parameters satisfy some given conditions.
主要研究一类具有Holling-Ⅱ型响应函数的捕食模型的非负平衡解问题,讨论了当参数满足适当条件时,非负平衡点的全局渐近稳定性。
4) global asymptotic stability
全局渐近稳定
1.
The Sufficient and Necessary Conditions of the Locally Asymptotic Stability and the Sufficient Conditions of the Global Asymptotic Stability of the 3-Dimenensional Competitive System;
一类生态方程局部渐近稳定的充要条件和全局渐近稳定的充分条件
2.
Necessary and Sufficient conditions for global asymptotic stability of mutualistic Volterra ecosystems;
多种群互惠型Volterra生态系统全局渐近稳定的充要条件
3.
And then the conditions on the global asymptotic stability of the non-disease equilibrium and local disease s equilibrium are obtained.
研究具有免疫接种和饱和传染率(βS~2)/(1+αS~2)的传染病SIRS模型,得到了无病平衡点及地方病平衡点全局渐近稳定的条件。
5) Global stability
全局渐近稳定
1.
An improved result for the model is derived,that is,the unique positive constant steady state is the global stability.
应用比较原理和建立与正解的上下确界相关的迭代格式,得到了一些改进的结果,即惟一的正常数平衡态是全局渐近稳定的。
2.
In this paper the kolmogorov system with constant stocking rate 2 0 1 2 2dd(()) dd()tx x a a x a x y f ty y bx d???? = + ? ?? +??? = ? is considered and the author obtains sufficient and necessary condition for the existence and uniqueness of limit cycle surrounding the positive equilibrium point and for the global stability of the system.
研究一类具有常数存放率的kolmogorov捕食系统20 1 22dd(())dd()xt x a a x a x y fyt y bx d????=+???+???=?得到了极限环存在惟一性的充要条件及系统全局渐近稳定的充要条件,从而推广了前人相关的结果。
3.
Considing the control of susceptibles and infectives,Obtain the global stability fixed point and periodicity of system,Finally,give the biological note and simulation.
研究了一类具密度制约和双线性传染率的S IS传染病模型,考虑到了实际中对易感者和传染者的控制,得到了地方病平衡点的全局渐近稳定性和系统的周期性,并给出了生物学解释和仿真。
6) global asymptotical stability
全局渐近稳定性
1.
By constructing suitable Lyapunov function,some sufficient conditions are obtained which guarantee the global asymptotical stability of periodic solutions of discrete Leslie system with mutual interference.
通过构造适当的Lyapunov函数,建立了保证该类具有相互干扰的离散Leslie系统周期正解的全局渐近稳定性的充分性条件。
2.
By the means of the stable theory and method of differential equation,this paper proves the existence and global asymptotical stability of the disease-free equilibrium and the endemic equilibrium,and obtains the basic reproductive number which determines whether the disease dies out or remains.
在考虑因病死亡因素的情况下,建立了一类具有常数输入的总人口变动的SIR和SIS组合传染病模型,利用微分方程稳定性理论和方法证明了无病平衡点和地方病平衡点的存在性及全局渐近稳定性,并且得到了决定疾病绝灭或持续生存的基本再生数。
3.
In this paper,the monotonicity principles are utilized to study separately the global asymptotical stability of two-dimensional and three-dimensional cooperative(competitive) systems with non-positive divergence,whose results develop the known conclusions.
利用负散度和不可约合作(竞争)系统的单调性质,分别研究二维和三维合作(竞争)系统的全局渐近稳定性。
补充资料:渐近稳定解
渐近稳定解
asymptotically - stable solution
渐近稳定解[asymp咖回ly一stable sduti佣;~"ror卜,ee姗ycro曲,栅e peoe“。el 一个微分方程组的解,它在月刃乃旧oB意义下是稳定的(见加.lyl舰旧稳定性(Lyapunov stability)),并且吸引具有足够接近的初始值的一切其他解.例如,考虑方程组 卒二f(r.,、‘。 a了J、右边的函数f(:,考)对于一切:):,考任R”有定义,并使得方程组(*)的解存在而且是唯一的.这时,方程组(*)的解 x(;,乱),x(:,乱)=老。是渐近稳定解,如果这个解同一切与其足够接近的解 x(:,句,}若一蜀}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条