说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Bernoulli-Gaussian白噪声
1)  Bernoulli-Gaussian white noise
Bernoulli-Gaussian白噪声
2)  non-Gaussian impulsive noise
非Gaussian噪声
3)  BernoulliGaussian sequence
Bernoulli-Gaussian序列
4)  daytime noise
白昼噪声
5)  Weak white noise
弱白噪声
6)  white noise
白噪声
1.
Virtual white noise generator based on Logist eqution and Labview;
基于Logist方程和Labview的虚拟白噪声发生器的设计
2.
The Calculation of Correlation Function of the Linear System Output When the Random Input is White Noise;
随机输入为白噪声时线性系统输出的相关函数的计算
3.
Design of Logist equation virtual chaotic white noise generator based on LabWindows/CVI technology;
基于LabWindows/CVI技术的Logist方程虚拟混沌白噪声发生器设计
补充资料:白噪声


白噪声
white noise

  白噪声[咖te俪se;6e几u曲川yM] 有常值谱密度(sPeet阁de招ity)的广义平稳随机过程(stationa理stochasticP联ess)X(t).白噪声的广义相关函数形如刀(r)二。’占(t),其中叮’是正常数而占(t)是吞函数.白噪声过程被广泛应用于描述有很小相关周期的随机扰动(例如“热噪声”—导体中由电子的热运动产生的电流强度的脉动).在白噪声的谱分解 x(。)一丁。!、!d:(、)中,其“基本振动”e“‘d:(又)在所有频率又处都有同样的平均强度;更确切些说,它们的平均平方振幅是 Eld:(洲2一兰以一二<伙二. 2兀这个谱分解意味着,对每一平方可积函数甲(t), 一J,(:)X(。)d:一丁石(、)d·(、),其中石(劝是毋(t)的R脚让r变换(Fourie:tr二-form);广义过程X二(x,毋>对函数职(t)的更明显的依赖性可以由一个与d以劝同类型的对应随机测度d叮(t)来描述(d叮(t)是随机测度dz(又)的Fou-rier变换),即 ‘X,,,一了,(。)d。(亡)· G泣仍s白噪声(Gauss恤认七ite noise)X(t)作为肠旧翎.运动(Bro~订幻石。n)叮(t)的广义导数(X(t)=叮‘(t)),是构造“受控”于一随机微分方程的随机扩散过程(diffusionp联ess)y(t)的基础: Y,(t)=a(t,Y(t))+。(t,Y(t))粉‘(t)·这方程常常写成微分形式: dy(t)=a(r,Y(r))dr+。(r,Y(t))d叮(t). 涉及白噪声应用的另一类重要模型是描述有平稳随机扰动X(t)作用于其上的稳定振动系统行为的随机过程Y(t),这时,Y(s)(st).这种系统的一个很简单的例子是 _了d、,,、 PI‘竺一】Y(t飞=X(t)、 一\dt/一‘一’其中尸(:)是全部根都在左半平面的多项式;在阻尼掉“瞬时过程’之后,过程Y(t)即由下式给出: y“,一f击“·‘、,·实际应用中,在所谓散粒效应(shot effect)过程的描述中,如下形式的白噪声 x(。)二艺占(。一;*) k起着重要的作用(k在一的与的之间变动,而…,:一:,;〔,,:t,…构成一Poisson过程);更确切地说,X(t)是Poisson过程粉(t)的广义导数.散弹效应过程本身有如下形式: Y(:)一了。(。,:)x(、)、:一J。(。,:)、。(、) =艺c(:,Tk) k其中c(t,、)是满足条件 丁!。(:,:)}2、:、二的权函数;此外,广义过程X=的均值是 a‘,,一a丁,(「)d‘,其中a是Poisson律的参数(见上),而该过程的谱表示 X(:)一a+丁。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条