1) Attribute-associated Bayes
属性依赖贝叶斯
2) attribute dependence
属性依赖
1.
By using the above two characteristics,the concepts of ladder knowledge,the generation of ladder knowledge and the attribute dependence of knowledge were presented,the attribute dependence mining theo-rem of knowledge and the attribute dependence mining-state recognition criterion of knowledge were proposed,and the applica-tions of attribute dependence.
给出阶梯知识,阶梯知识生成,知识属性依赖的概念,提出知识的属性依赖挖掘定理,知识的属性依赖挖掘-状态识别准则,给出知识的属性依赖挖掘的应用。
3) attribute dependency
属性依赖性
1.
A new attribute dependency and significance were defined with the independent check theory of the statistical aiming at the disadvantages of the standard for choosing the attributes of the branch nodes with the information gain in the ID3 algorithm.
针对ID3算法用信息增益作为在各级非叶节点上选择属性的标准的局限性,结合统计学独立检验思想,给出一种新的属性依赖性和重要性定义,以新的属性重要性为启发式信息设计决策树规则提取算法。
2.
The relation between absolute reducts and attribute dependency is also discussed.
此外还阐述了绝对属性约简与属性依赖性之间的关系。
5) copy-dependent expression
拷贝依赖性表达
6) attributes weighted Nave Bayesian algorithm
属性加权朴素贝叶斯
1.
This paper proposes an attributes weighted Nave Bayesian algorithm and describes its usage in the Chinese traditional medical clinical classification model for coronary heart disease.
在原有中医药冠心病临床治疗数据采集系统的基础上,使用中医证型的辨证相关因素,提出属性加权朴素贝叶斯算法,并应用到冠心病中医证型的分类模型之中。
补充资料:贝叶斯公式
贝叶斯公式为利用搜集到的信息对原有判断进行修正提供了有效手段。在采样之前,经济主体对各种假设有一个判断(先验概率),设为,{}。
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为
,= 1, 2, %26#8230;, (5.5)
在实际经济生活中,信息搜寻工作不是一次就完成的。当信息搜寻进行到某一阶段,设已进行了 次采样( =1,2,%26#8230;),此时经济主体对各假设的后验概率的认识为
=1, 2, %26#8230;, (5.6)
其中,表示在第次采样前对假设的判断,当 =1时即表示第一次采样前的先验概率,从而式(5.5)变成式(5.6)的一个特例,即,将其记为。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条