1) Temporal-spatio segmentation
图象时空分割
2) image segment
图象分割
1.
CT wood image segment by analyzing gray-value histogram;
基于灰度直方图分析的原木CT图象分割
2.
The Research of Car Image Segmentation and Vehicle Plate Location Arithmetic;
汽车图象分割与车牌定位算法的研究
3) image segmentation
图象分割
1.
Application of image processing based on the image segmentation in weld detection;
基于图象分割的图象处理法在焊缝识别中的应用
2.
Image Segmentation with Multiple Gray Levels;
多灰度等级图象分割算法及实现
3.
Color Image Segmentation and Its Application to Tongue Image Processing for TCM;
彩色图象分割及其在中医舌图象处理中的应用
4) segmentation
[英][,seɡmən'teiʃən] [美][,sɛɡmən'teʃən, -mɛn-]
图象分割
1.
Aimedat studying the plane image detected by infrared imaging, this paper puts forward a method of adaptive threshold selection for the top to bottom gray image segmentation.
以红外成像探测得到的飞机图象为研究对象 ,将灰度直方图分析和飞机红外灰度图象固有的不变性特性信息结合起来 ,提出了一种自顶向下的灰度图象分割自适应门限的选取方法。
5) spatio-temporal segmentation
时空分割
6) Spatial-Temporal Segmentation
时空分割
补充资料:图象区域分割
图象区域分割
image region segmentation
tux一ang quyu fenge图象区域分割(image region义gmentation) 基于图象区域特性的差异对图象进行分割的技术。区域分割的基本思想是标识图象中各个具有相似特征的区域。相似的特征可以是形状、象素值或纹理等。在模式识别中的聚类技术也可用于基于区域的图象分割。 模板匹配基于区域分割图象的一种直接方法是将图象中的区域和一组给定的模板进行比较匹配,从而将符合模板的物体从图象的其它部分中分割出来,而剩余的图象则可根据需要再用其它方法分析。例如,模板匹配可用于分割图文混排的书稿。当文字用模板匹配的方法找出来以后,图形可再用其它方法进行分析。模板匹配的过程往往用相关或卷积计算来进行(参见图象处理的基本运算)。 纹理分俐当物体置于明显的纹理背景中或物体本身具有较强的纹理特征时,就需要利用基于纹理的区域分割方法。由于纹理是某种模式,或者说图案、花样、结构等的重复,所以不能用单个的象素的特性(灰度或颜色)来描述。当然也无法用基于象素的分类方法(参见图象象素分类)。由于纹理经常包含有大量的边缘,因此,除非滤去纹理,否则用边界跟踪的方法分割有丰富纹理的图象很难有好的效果。 纹理的描述与分类是分割的基础(参见图象特征提取)。当我们知道图象中有某种纹理存在时,可利用已知纹理的特征(如该纹理在频域中的描述或空间灰度关系矩阵)在图象中寻找。如果事先没有知识的话,可以采用基于区域的聚类方法进行纹理区域的分割。一种容易想到的办法是:把图象分成若干(小)块,计算每一块的纹理特征,根据特征差别的程度决定是否把小块合并。 区域聚类法聚类法一般可分为区域生长法及分裂合并法。 区域生长区域生长的基本思路是:从满足检测准则的点或一块区域开始,在各个方向上“生长”物体。“生长”的依据是:同一类型区域的特征,如灰度、颜色及纹理特征等,相差不会太远。满足一定合并条件的邻域可以并人该区域。在生长过程中,合并条件可以调整。当再也找不到可合并的邻域时,生长停止。 区域的分裂和合并这个方法的基本思路是:首先将图象分为若干“初始”区域,然后再分裂或合并这些区域,逐步改进区域分割的指标,直到最后将图象分割为数量最少(或符合某一要求)的“基本一致”的区域为止。通常,“一致”性的标准可用特性的均方误差来量度。 与基于边界的图象分割方法(参见图象边缘检测)相比,基于区域生长法和分裂合并法对噪声相对不敏感,但是计算复杂度较高。(俞志和)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条