1) term weight
特征词权重
1.
To improve the classification performance, this paper does research and improves on the classical algorithm of calculating the term weight in VSM.
为了提高分类性能,本文研究和改进了基于向量空间模型的特征词权重计算方法,同时提出了一种基于类别均衡的k近邻(kNN)分类算法。
2) feature weighting
特征权重
1.
Performance of feature weighting computation directly influences precision of text classification or clustering.
特征权重计算是文本表示的关键,权重计算方法的优劣直接影响文本分类和聚类的准确度。
3) Feature weight
特征权重
1.
A topic-based feature weight calculation method for patent categorization
专利分类中基于主题的特征权重计算方法
2.
After feature reduction,based on the hypothesis that time factor has a significant affect on the adoptability of the history cases,a small scale algorithm for case feature weight calculation called TSBMPSA is proposed.
经过特征约简,在假设时间因素对历史案例可采纳程度有显著影响基础上,提出了一种小规模的基于时序的案例特征权重多阶段调整算法。
3.
This paper mainly discusses the feature weight autolearning method for casebased reasoning.
重点讨论了基于案例推理中特征权重的自动学习方法。
5) Weighted Words
加权特征词
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条