1) constrained complex Remez algorithm
约束复Remez算法
2) complex Remez algorithm
复Remez算法
1.
Karam and McClellan is the foundation of the complex Remez algorithm for Chebyshev design of complex FIR filters.
Karam和McC lellan最早得到了有关复数域Chebyshev逼近的复交错点组定理,并提出了以此定理为基础的复Remez算法用于复FIR数字滤波器的Chebyshev设计。
3) Remez algorithm
Remez算法
1.
The design procedure of FIR digital filter which is based on Chebyshev approximation theory and used to design compensating filter is analyzed,and the compensating filter designed ac-cording to Remez algorithm is provided.
阐述了数字化接收机中需要设计的CIC滤波器,分析用于设计补偿滤波器的基于切比雪夫逼近准则的FIR数字滤波器设计方法,给出了根据Remez算法设计的补偿滤波器。
2.
This paper uses the adaptive spectral-line enhancer based on LMS algorithm to suppress the noise which aims at the limitation of current Loran-C receiver with analog filter and contrasts this technique with an filter designed by Remez algorithm.
针对目前罗兰C接收机用模拟滤波器抑制噪声方面的缺陷,将基于LMS算法(最小均方准则)的自适应谱线增强器应用于抑制罗兰C接收机中噪声,并且与用Remez算法设计的FIR滤波器进行比较。
4) extended Remez algorithm
增广Remez算法
1.
Based on this theorem,an extended Remez algorithm for solving the optimal filter is proposed to solve the chebyshev design problem of linear phase FIR filters with ineguality constraints.
针对约束Chebyshev逼近问题提出一个增广交错点组定理 ,并根据此定理提出了一个增广Remez算法 ,用于求解带不等式约束的线性相位FIR数字滤波器的Chebyshev设计问题 。
5) Remez optimized design
Remez优化算法
6) remez exchange algorithm
Remez交换算法
补充资料:几复寄槟榔且答诗劝予同种复次韵寄之
【诗文】:
少来不食蚁丘浆,老去得意漆园方。
监中已失儿时面,忍能乞与兵作郎。
【注释】:
【出处】:
少来不食蚁丘浆,老去得意漆园方。
监中已失儿时面,忍能乞与兵作郎。
【注释】:
【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条