说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性几何畸变
1)  nonlinear geometric distortion
非线性几何畸变
2)  linear geometrical distortion
线性几何畸变
1.
The method of removing the influence of linear geometrical distortion when the digital camera is used is discussed in detail, which makes it possible to do non destructive measurement with digital cameras.
讨论了使用数码相机时消除线性几何畸变影响的方法 ,使利用数码相机实现非破坏性测量真正走向了实用化 。
3)  geometric distortion
几何畸变
1.
Detection and correction of geometric distortion in image displaying system;
图像显示系统几何畸变的测量及校正
2.
A digital method for the correction of geometric distortion in scanned image;
一种扫描图像几何畸变的数字校正方法
3.
Correction of the geometric distortion to image defect detection;
探伤图像的几何畸变校正方法
4)  geometrical distortion
几何畸变
1.
Analysis and measurement of geometrical distortion of computer radiographs;
计算机放射成像系统几何畸变的测试和分析
2.
The current paper dicusses the basic principle of how to solve the precise measurement and calculation of FOD, FDD, and the correction of the geometrical distortion of the projected image.
由于图像增强器与图像获取装置本身固有特点以及非线性获取成像 ,投影图像存在几何畸变。
3.
According to the reasons for the geometrical distortion of digital images,an auto-correction method is proposed.
通过分析数字图像几何畸变产生的机制,提出一种数字图像几何畸变自动校正的方法。
5)  Geometry distortion
几何畸变
1.
Rectification of geometry distortion of the image in non-contacting body measurement system;
非接触式人体测量系统中图像几何畸变的校正
2.
A method correcting vertical axis geometry distortion of optical image;
一种光学成像垂轴几何畸变校正方法
6)  geometrical nonlinearity
几何非线性
1.
Optimum design of single-layer lattice shells considering the effect of geometrical nonlinearity;
考虑几何非线性影响的单层网壳优化设计
2.
Analysis of hysteretic behavior of Pall-typed frictional dampers considering geometrical nonlinearity and corresponding test verification;
基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证
3.
Analysis for geometrical nonlinearity with Element-free Galerkin Method;
几何非线性分析的无网格伽辽金算法
补充资料:半导体非线性光学材料


半导体非线性光学材料
semiconductor nonlinear optical materials

载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条