1) psychological acoustics model algorithm
心理声学模型算法
2) Psychoacoustic model
心理声学模型
1.
Improvement of AAC psychoacoustic model based on CMDCT;
基于CMDCT的AAC编码器心理声学模型的改进
2.
Algorithm of hiding image in audio based on psychoacoustic model;
基于心理声学模型的音频隐藏图像算法
3.
A robust audio watermarking algorithm using psychoacoustic model;
一种应用心理声学模型的鲁棒音频水印算法
3) psychoacoustics model
心理声学模型
1.
A speech quality evaluation algorithm based on efficient psychoacoustics model,EPM-SQE,was proposed.
提出了一种高效心理声学模型语音质量评价(EPM-SQE)算法。
2.
It contributes 3 simplifications to the psychoacoustics model in ITU-T P.
分析了国际电信联盟提出的语音质量感知评价算法的原理,优化了其中的心理声学模型,提出了高效语音质量感知评价(EPESQ)算法。
4) psycho-acoustic model
心理声学模型
1.
Modifications to a tonality detection algorithm in psycho-acoustic model;
心理声学模型中音调探测算法的改进
2.
This paper presents the function, fundamental principle and algorithm flow of the psycho-acoustic model, which is one of the most important parts of MPEG-4 Advanced Audio Coding (AAC).
心理声学模型是MPEG-4AAC音频编码器中最重要的部分之一。
3.
The masking threshold for each audio signal segment was calculated on the basis of psycho-acoustic model.
首先根据心理声学模型 ,计算载体音频信号的掩蔽门限 ,并利用人耳听觉的临界频率与小波包子带间的相似特性 ,将DFT域掩蔽门限映射到小波包域 ;然后将水印信号嵌入到中低频小波包系数中 ,嵌入强度由掩蔽门限自适应控制。
补充资料:声学模型试验
在模型中进行各种声学参数测试,用以评价建筑物声学特性的方法。20世纪50年代,已有人在三维空间的模型中测量反射声的分布,研究观众厅的体型对音质的影响。此后,这种试验方法逐步完善并得到广泛的应用。80年代以来,开始利用电子计算机研究厅堂体型对音质的影响,它可以模拟各种声学参数进行音质评价。
原理 声学模型试验是根据物理学的相似原理进行的。无论声波在建筑物或模型中传播,因其介质都是空气,所以传播速度相同。在此基础上,要使1/n(例如1/10)的模型声场与实际声场相似,需要满足下列几个模拟条件:①模型的边界条件要和实际声场相同,几何尺寸为实际声场的1/n;②测量的频率要提高n倍,时间因素的量度要相应缩短为1/n;③模型和实际声场的各个对应边界表面(包括各种物体)的吸声系数,在所测量的频率范围要相同;④在模型中空气介质的吸声系数为实际声场的n倍。
目的 通过在模型中测量混响时间、声场分布、反射声分布和方向性扩散等音质参数,并进行主观评价,结合厅堂音质设计和计算对将建成的厅堂音质效果作出初步的估计。其目的是为了尽快地检查出音质设计方案是否完善,为及时修改体型和调整反射面,消除回声、颤动回声和声聚焦等潜伏的音质缺陷,以及为合理地布置吸声材料提供依据。对城市噪声控制的研究也可以用声学模型试验探讨房屋的高度和排列、道路的宽窄、屏障的设置和小区规划布置等对噪声控制的影响。此外,还可以通过声学模型试验探讨轻质结构的墙体和楼板垫层的隔声性能。
模型比例 根据用途确定模型的比例,并考虑经济性和实际可能性。模型比例值取得越大,测量的频带就越宽,所用电声元件和测量设备也易配置,但模型制作费用较大。模型比例值取得小,制作比较容易,但给测量工作带来很多困难。通常,音质试验用的模型可采用1/10或1/20的比例;城市噪声控制试验(试验室应作适当吸声处理)可用1/100至1/200的模型;隔声试验可用1/5的模型。声学模型的测量方法和实物的测量方法相同。但由于测量频率不同,对电声元件和测量设备的要求也有相应的变化。
原理 声学模型试验是根据物理学的相似原理进行的。无论声波在建筑物或模型中传播,因其介质都是空气,所以传播速度相同。在此基础上,要使1/n(例如1/10)的模型声场与实际声场相似,需要满足下列几个模拟条件:①模型的边界条件要和实际声场相同,几何尺寸为实际声场的1/n;②测量的频率要提高n倍,时间因素的量度要相应缩短为1/n;③模型和实际声场的各个对应边界表面(包括各种物体)的吸声系数,在所测量的频率范围要相同;④在模型中空气介质的吸声系数为实际声场的n倍。
目的 通过在模型中测量混响时间、声场分布、反射声分布和方向性扩散等音质参数,并进行主观评价,结合厅堂音质设计和计算对将建成的厅堂音质效果作出初步的估计。其目的是为了尽快地检查出音质设计方案是否完善,为及时修改体型和调整反射面,消除回声、颤动回声和声聚焦等潜伏的音质缺陷,以及为合理地布置吸声材料提供依据。对城市噪声控制的研究也可以用声学模型试验探讨房屋的高度和排列、道路的宽窄、屏障的设置和小区规划布置等对噪声控制的影响。此外,还可以通过声学模型试验探讨轻质结构的墙体和楼板垫层的隔声性能。
模型比例 根据用途确定模型的比例,并考虑经济性和实际可能性。模型比例值取得越大,测量的频带就越宽,所用电声元件和测量设备也易配置,但模型制作费用较大。模型比例值取得小,制作比较容易,但给测量工作带来很多困难。通常,音质试验用的模型可采用1/10或1/20的比例;城市噪声控制试验(试验室应作适当吸声处理)可用1/100至1/200的模型;隔声试验可用1/5的模型。声学模型的测量方法和实物的测量方法相同。但由于测量频率不同,对电声元件和测量设备的要求也有相应的变化。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条