1) Data extension technology
数据序列延拓
2) Data extension
数据延拓
3) Signal Data Extending
信号序列延拓
4) data sequence
数据序列
1.
It is difficult to tackle the problem about testing of attributes between two data sequences for grey relational analysis because the number of data sequences must be more than 2 in order to structure a grey relational space.
灰关联分析要求数据序列个数必须大于2才能构成灰关联空间,难以解决两个数据序列之间属性检验问题。
2.
Several non-dimensionalization changings of single-index data sequence and their characteristics are studied in this paper.
研究了单指标数据序列的几种无量纲化变换及其性质 ,提出了一种对灰色斜率关联度的改进模型 ,改进后的关联度能够反映序列的正、负相关关系 ,并且对原始序列进行无量纲化变换处理时不影响关联系数及关联度的值 ,还研究了改进的关联度及关联系数的性质。
3.
The purpose of filtering of a data sequence is to reduce the influence of measurement errors as possible on condition that the periodicity, ageing, and other effect quantities aroused by causal quantities should be maintained.
数据序列滤波的目的是在保留数据序列的周期性、时效性及其它原因量引起的效应分量的前提下 ,尽可能地削弱测读误差的影响。
5) Data series
数据序列
1.
Grey model is an exponential model,which has high precision to observation data series fiting in with exponential rule.
灰色模型是一种指数模型 ,它对于符合指数规律的观测数据序列具有较高的精确度。
补充资料:地球外部重力场的延拓
研究地球重力场的一种数学方法。
外部重力场的延拓,主要是指由地面观测数据计算空间某一高度的重力矢量,或由空间观测数据计算地面上的重力矢量。前者称为向上延拓,应用于改正空间飞行器轨道的扰动,提高惯性导航系统的精度;后者称为向下延拓,应用于航空重力测量和卫星重力梯度测量值的归算。
任一点的重力矢量,都由正常重力矢量和同一点的扰动重力矢量两部分组成。前者可以根据正常重力位,用封闭公式计算;后者是数值很小且又不规则的扰动。外部重力场的延拓主要研究扰动重力矢量的解算方法。
延拓问题有不同的解法。上延问题一般可采用:①按广义斯托克斯公式直接解算外部扰动位,采用这种方法需已知地面上的重力异常值。②用分布于参考椭球面上的面密度为:
(△g为地面上的重力异常;N为大地水准面差距;G为地面平均重力;R为地球平均半径)的扰动质量所产生的单层位来解算外部扰动位,采用这种方法需已知地面上的重力异常△g和大地水准面差距N。③用球的泊松积分把地面上扰动位直接延拓到外部空间。由于被积函数递减很快,因此积分区域不需很大,通常可用平面公式计算。采用这种方法需要知道地面上的重力异常、大地水准面差距和垂线偏差值。④球谐函数展开法。把地面上及其外部的扰动位都用一个有限项的球谐函数级数表示,展开式的系数可由地面重力和卫星观测资料一并解出。这种方法计算最简便,但级数收敛很缓慢,并且有限项的展开也不可能完全反映出重力异常场的局部起伏。所以这种方法只能用于上延高度很大而且精度要求不高的情况。
对向下延拓问题可采用的解算方法有:①迭代法。作为向上延拓的逆演,泊松积分变为积分方程,这时必须用迭代法求解。这一方程通常收敛很快。②球谐函数展开法。这种方法与向上延拓的球谐函数展开法相同。
外部重力场的延拓,主要是指由地面观测数据计算空间某一高度的重力矢量,或由空间观测数据计算地面上的重力矢量。前者称为向上延拓,应用于改正空间飞行器轨道的扰动,提高惯性导航系统的精度;后者称为向下延拓,应用于航空重力测量和卫星重力梯度测量值的归算。
任一点的重力矢量,都由正常重力矢量和同一点的扰动重力矢量两部分组成。前者可以根据正常重力位,用封闭公式计算;后者是数值很小且又不规则的扰动。外部重力场的延拓主要研究扰动重力矢量的解算方法。
延拓问题有不同的解法。上延问题一般可采用:①按广义斯托克斯公式直接解算外部扰动位,采用这种方法需已知地面上的重力异常值。②用分布于参考椭球面上的面密度为:
(△g为地面上的重力异常;N为大地水准面差距;G为地面平均重力;R为地球平均半径)的扰动质量所产生的单层位来解算外部扰动位,采用这种方法需已知地面上的重力异常△g和大地水准面差距N。③用球的泊松积分把地面上扰动位直接延拓到外部空间。由于被积函数递减很快,因此积分区域不需很大,通常可用平面公式计算。采用这种方法需要知道地面上的重力异常、大地水准面差距和垂线偏差值。④球谐函数展开法。把地面上及其外部的扰动位都用一个有限项的球谐函数级数表示,展开式的系数可由地面重力和卫星观测资料一并解出。这种方法计算最简便,但级数收敛很缓慢,并且有限项的展开也不可能完全反映出重力异常场的局部起伏。所以这种方法只能用于上延高度很大而且精度要求不高的情况。
对向下延拓问题可采用的解算方法有:①迭代法。作为向上延拓的逆演,泊松积分变为积分方程,这时必须用迭代法求解。这一方程通常收敛很快。②球谐函数展开法。这种方法与向上延拓的球谐函数展开法相同。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条