说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分形维数轨迹
1)  fractal dimension trajectory
分形维数轨迹
2)  factional dimension numbers of the path
轨迹分维数
3)  migration parameters
三维轨迹分析
4)  3D trace
三维轨迹
5)  4-D trajectory
四维轨迹
1.
Due to the large errors of traditional aerodynamic 4-D trajectory prediction models,a prediction model based on mining flight history data was proposed.
该模型挖掘历史飞行时间数据,从中找出影响飞行时间的因素,预测出下一次飞行的全程时间,然后从历史位置数据中分析得出飞机在每个采样周期点上的位置,实现完整的四维轨迹预测。
6)  Fiber paths
纤维轨迹
补充资料:分形维数
分形维数
fractal dimension

   描述分形最主要的参量。简称分维。通常欧几里德几何中,直线或曲线是1维的,平面或球面是2维的,具有长、宽、高的形体是 3 维的;然而对于分形如海岸线、科赫曲线、射尔宾斯基海绵等的复杂性无法用维数等于 1、2、3 这样的数值来描述。科赫曲线第一次变换将1英尺的每边换成4个各长4英寸的线段,总长度变为 3×4/3=4 英尺;每一次变换使总长度变为乘以4/3,如此无限延续下去,曲线本身将是无限长的。这是一条连续的回线,永远不会自我相交,回线所围的面积是有限的,它小于一个外接圆的面积。因此科赫曲线以它无限长度挤在有限的面积之内,确实是占有空间的 ,它比1维要多,但不及2维图形,也就是说它的维数在1和2之间,维数是分数。同样,谢尔宾斯基海绵内部全是大大小小的空洞,表面积是无限大,而占有的 3 维空间是有限的,其维数在2和3之间。
   计算分形维数的公式是 !!!F0650_1,式中ε是小立方体一边的长度, N (ε)是用此小立方体覆盖被测形体所得的数目,维数公式意味着通过用边长为ε的小立方体覆盖被测形体来确定形体的维数。对于通常的规则物体 ,覆盖一根单位 长度的线 段所需 的数目要 (ε)=1/ε2,覆盖一个单位边长的正方形,N(ε)=(1/ε)2 ,覆盖单位边 长的立方体,N (ε)=(1/ε)3。从这三个式子可见维数公式也适用于通常的维数含义。利用维数公式可算得科赫曲线的维数 d=1.2618,谢尔宾斯基海绵的维数d 2.7268。对于无规分形,可用不同的近似方法予以计算,也可用一定的适当方法予以测定。
    分维反映了复杂形体占有空间的有效性,它是复杂形体不规则性的量度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条