说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 构造性机器学习算法
1)  structural machine learning algorithm
构造性机器学习算法
2)  constructive study algorithm
构造性学习算法
3)  structural machine learning method
构造性机器学习方法
1.
A model that combines grey model GM(1,1) and structural machine learning method(Alternative Covering Algorithm) is presented for meteo.
并提出了一种灰色模型GM(1,1)与构造性机器学习方法(交叉覆盖算法)结合的模型对气象时间序列进行数据挖掘(产量预测)。
2.
The structural machine learning method—covering algorithm possesses faster speed,lower complexity,stronger interpretability and higher precision.
构造性机器学习方法——覆盖算法学习速度快、复杂度低、可解释性强,能有效地解决有导师学习问题,并取得了很好的效果,但构造神经元的权值即取新覆盖中心时通常人为地给定一个准则,并未遵循样本的分布特征求得最优解。
4)  structural machine learning
构造性机器学习
5)  structural learning algorithm(SLA)
构造性学习算法(SLA)
6)  structual & weight learning algorithm
自构造学习算法
补充资料:逆推学习算法
分子式:
CAS号:

性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条