1) LP Mel Cepstrum Coeficient(LPMCC)
线性预测美尔倒谱系数
2) LPCC
线性预测倒谱系数
1.
This paper introduces (Linear Prediction Cepstrum Coefficient,LPCC)extraction algorithm, proposes a floating-point IP core implementation model of this algorithm, and describes the design of each sub-module in detail.
介绍了线性预测倒谱系数(Linear Prediction Cepstrum Coefficient,LPCC)提取算法,给出该算法的一种浮点IP核实现模型,并详细描述了各个子模块的设计方法。
2.
Taking LPCC as the voice feature parameters,the VQ as the model matching method,the correlative experiment is carried on.
采用线性预测倒谱系数(linear prediction cepstrum coefficient,LPCC)作为语音的特征参数,矢量量化(vector quantity,VQ)方法进行模式匹配,探讨声纹识别以实现身份认证,并对此识别方法进行了相关的实验。
3) linear predict code cepstral coefficients
线性预测编码倒谱系数
4) perceptual linear predictive cepstrum coefficient
感知线性预测倒谱系数
1.
The perceptual linear predictive cepstrum coefficient is extracted from the reconstructed spectrum and is combined with .
算法基于重建浊音频谱提取感知线性预测倒谱系数,与基音相组合作为说话人的语音特征参数矢量,采用高斯混合模型对说话人进行建模。
5) Mel frequency cepstrum coefficient(MFCC)
美尔倒谱系数
1.
In present,the most basical used parameters for speaker identification are linear predictive coding(LPC) parameter,Mel frequency cepstrum coefficient(MFCC),etc.
目前在说话人识别中常用的特征是线性预测编码(LPC)参数和美尔倒谱系数(M FCC)等。
6) MFCC
美尔倒谱系数(MFCC)
补充资料:数理统计预测法(见发生量预测)
数理统计预测法(见发生量预测)
数理统计预测法见发生皿预测。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条