1) mobile node localization
移动节点定位
1.
In order to localize the mobile sensor nodes in real time and with high accuracy,by employing mean shift algorithm to generate the proposal distribution for the joint particle filter,a novel mobile node localization algorithm is proposed,which we called Mean Shift Particle Filter.
针对无线传感器网络移动节点定位面临的高精度和实时性要求,把均值漂移算法引入联合粒子滤波(Joint ParticleFilter)框架,提出了基于均值漂移和联合粒子滤波的移动节点定位算法。
2) Joint translational displacement
节点平动位移
3) joint-directed moving method
节点定向移动法
1.
By taking into account the advantages of the two methods and the characteristic of form-findings, a joint-directed moving method is presented.
对基于非线性有限元法的两种膜结构找形方法(支座移动法和节点平衡法)进行了分析,在此基础上提出了节点定向移动法。
4) node displacement
节点位移
1.
Three solution metbods for node displacement of tension and pressure member system in material mechanics were presented and compared.
提出了拉压杆系节点位移求解的三种方法,并加以比
2.
By using this relations,we can calculate node displacement of the statically indeterminate structure of bar system and to build compatibility equation of deformation of the statically indeterminate structure of bar system which possesses conventional and general features,to avoid painting di.
将速度投影定理推广到弹性杆,通过定义杆的单位向量,建立了杆端点的位移与杆轴向变形的几何关系,用此关系计算杆系结构的节点位移和建立静不定杆系结构的变形协调方程具有程式化和普遍性的特点,避免了绘制位移图和寻找几何关系的繁琐。
5) nodal shift
节点移位
6) Mobile Nodes Localization
运动节点定位
补充资料:电力网节点编号优化
电力网节点编号优化
network nodes order optimization
d旧nl!wong Jled一anb旧nhoo youhuo电力网节点编号优化(network nodes order。Ptimization)用稀疏矩阵技术求解电力系统网络方程时,为了节省计算机内存和加快计算速度,按照一定规则编排电力网各个节点次序。 在电力系统计算中,网络方程通常采用导纳矩阵方程的形式,它的求解多采用高斯消去法和直接三角分解等(见网络方程求解方法)。导纳矩阵是零元素很多的稀硫矩阵,对它进行消元或三角分解后所得的三角矩阵,要增加一些称为注人元的非零元素。为节约计算机内存及避免对零元素的不必要运算,在计算机中一般只贮存三角矩阵中的非零元素.因此,三角矩阵中非零元素的个数,直接影响计算机内存的需要量及程序计算速度.导纳矩阵非零元素的分布直接影响消元或分解后三角矩阵非零元素的数目.而网络节点编号次序又与导纳矩阵非零元素的分布密切相关(见图1),因此,电力网节点编号优化是求解网络方程前的一项重要工作。┌─────┬────┬─────────┬────┐│节点.号.形│导纳矩阵│消元或分解后三角阵│注入元致│├─────┼────┼─────────┼────┤│么 │麟 │魏 │弓 ││21月 │ │ │ │├─────┼────┼─────────┼────┤│上 │瀚 │魏 │l │├─────┼────┼─────────┼────┤│。~主钩 │麟 │继 │(j │└─────┴────┴─────────┴────┘ 图1节点编号对注入元的影响 ·一非零元素;X一非零注入元紊 节点编号的最优化是寻求一种使注人元素数目最少的节点编号方案.对n个节点的电力网来说,其节点编号方案可以有川种,选最优的工作量将非常大.因此,在实际中往往采取一些简化的方法对节点编号进行优化,并不一定追求“最优”。 根据消元的计算公式或星形一三角形变换规则(见图2),每消去一个节点i,新增加的元素数为八一冬Ji(J‘一,)一及 ‘(1) l、、一一洲声图2消去节点1网络变化示意图式中J‘为在消去节点i时节点i的出线数;及为在消去节点i时与节点i有连线的各节点之间已有的连线数.常用的一些节点编号优化方案,大都根据式(1)或对其作一些简化得到的,主要可分以下三类。 (l)静态按最少出线数编号。对式(1)略去八项,视去为常数,即不考虑消去前面节点对节点i的出线数的影响,因此,也称静态优化法。该方法简单、快速、应用极为普遍。 (2)动态按最少出线数编号。对式(1)略去八项,但考虑Ji的变化,即考虑消去前面节点对节点i的出线数的影响,因此,也称半动态优化法。 (3)动态按增加出线数最少编号.对式(1)考虑及项和J‘的变化,即动态按增加出线数最少的原则编号,也称动态优化法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条