1) Anti-Self-Dual Metrics
反自对偶度量
1.
Anti-Self-Dual Metrics on Four-Manifolds;
四维流形上的反自对偶度量
2) self-duality point
反自对偶点
3) self dual and anti self dual
自对偶与反自对偶
4) self-dual measure
自对偶测度
1.
The concept of self-dual measure is presented,and its simple properties are discussed;The definition of the Choquet integral based on self-dual measure is given,and its basic properties are also discussed.
提出了自对偶测度的定义,讨论了自对偶测度的简单性质,给出了基于自对偶测度的Choquet积分的定义,并讨论了该积分的基本性质。
5) self-dual code
自对偶码
1.
Subcode chains of quaternary self-dual code
四元域上自对偶码的子码链
2.
In the last ten or more years,the cyclic codes and self-dual codes over finite rings have become a hot issue for coding theorists.
多年来,有限环上的循环码和自对偶码一直是编码研究者所关心的热点问题。
3.
2) C(1) is self-dual quaternary code if C is self-dual code and of the type 8(n/2
研究了Z8-码的重量计数器以及广义的MacWilliams恒等式,同时研究了两个与Z8-码C相关的码C(1)和C(2)的特性,得到了如下结论:若Z8-码C是自正交的,则C(1)和C(2)是自正交的四元码;若Z8-码C是类型为8n2的自对偶码,则C(1)是自对偶四元码。
6) self dual
自对偶
1.
On the basis of a unified definition of the dual operation and the (anti )self dual operation, the connections of the su(2,2|1) main cluster was used as the fundamental field variables to construct the self dual Lagrangian of conformal supergravity.
利用内外指标的对偶运算及 (反 )自对偶运算的统一定义 ,将su(2 ,2 |1)主丛联络作为基本场变量来构建自对偶的共形超引力拉氏函数 。
2.
In terms of Dirac matrices the self dual and anti self dual decomposition of a conformal supergravity is given and a self dual conformal supergravity theory is developed as a connection dynamic theory in which the basic dynamic variables include the self dual spin connection i.
利用狄拉克矩阵对共形超引力进行自对偶—反自对偶分解得出了自对偶的共形超引力理论 。
3.
The optimizer is global unique,and the resulting foumula is self dual.
就如何选取自调节变尺度法的调节因子及Broyden族参数引入了新的度量函数,给出相应的最优调节因子及最优参数,这一对参数为在保证修正矩阵对称正定条件下的整体最优参数,所得的公式为自对偶
补充资料:可公度量和不可公度量
可公度量和不可公度量
ommensulble and incommensuable magnitudes (quantities)
可公度t和不可公度t【~e璐u由lea目in~men-su.ble magultodes(quanti柱es);“洲口Mel娜M毗“”“”-113Mep目M曰e肠eJ皿,一皿曰』 如果两个同类量(例如两个长度或两个面积)具有或不具有公度(common measure,即另一个同类量,所考虑的两个量都是这个量的整数倍),则相应地称这两个量为可公度量或不可公度量.正方形的边长和对角线,或圆的面积和丫的半径的平方,都是不可公度量的例尹.如果两个量是可公度的,则‘l艺们的比是有理数;相反,不可公度量忿比是无理数、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条