1) necessary optimal condition
必要最优条件
1.
Morduhovich, we derive necessary optimal conditions for this class of optimal problems.
Mordukhovich关于集值映像或非光滑映像的广义微积分理论导出这类优化问题解的必要最优条件。
2) necessary optimality condition
最优性必要条件
1.
The Kuhn-Tucker type necessary optimality conditions under this constraint qualification are derived.
对一类目标函数由可微函数与凸函数之和组成、约束条件由Rn的凸子集X上的可微非线性不等式组成的不可微规划问题,提出了一个Abadie型约束品性,证明了该约束品性弱于文献[1]中的两个约束品性,得到了该约束品性下的Kuhn-Tucker型最优性必要条件。
3) necessary optimality conditions
最优性必要条件
1.
A note on necessary optimality conditions for a class of generalized fractional programming;
一类广义分式规划最优性必要条件的注记
2.
In this paper, the necessary optimality conditions for vector extremum problems with equality constraint in product of Banach spaces are obtained by using a implicit function theorem in Banach spaces and a theorem of the alternative for subconvexlike vector-valued maps in ordered linear topological spaces.
本文利用Banach空间中的隐函数定理和序线性拓扑空间中对于次似凸向量值映射的择一定理,得出了乘积Banach空间中具有等式约束向量极值问题的若干最优性必要条件。
3.
In this paper,by using a implicit function theorem in Banach spaces the necessary optimality conditions for mathematical programming problems with equality constraints in the product of Banach spaces are established.
本文利用 Banach 空间中的隐函数定理,得出了乘积 Banach 空间中具有一般等式约束的数学规划问题的最优性必要条件。
4) necessary optimality condition
必要最优性条件
1.
Moreover,the necessary optimality conditions in mathematical programming problem with equality and inequality constraints of Lipschitz functions are derived with the help of Ekeland variational principle on Riemannian manifolds.
在此基础上,利用Ekeland变分原理,推导出基于黎曼流形上具有等式和不等式约束的数学规划问题的必要最优性条件。
5) necessary optimality conditions
最优必要条件
1.
With it, it gets the necessary optimality conditions for a kind of generalized and composite optimization problem.
利用“局部和规则” ,讨论并得到了一类较广的复合优化问题的最优必要条
补充资料:必要条件
如果无甲必无乙,有甲则可能有乙也可能无乙,那么甲就是乙的必要条件。例如,不遵守逻辑规则必然写不出好文章;遵守逻辑规则,则可能写出好文章也可能写不出好文章。因此,遵守逻辑规则就是写出好文章的必要条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条