1) codim-2
余维-2
2) codimension two
余维2
1.
Distribution of limit cycles for a class of higher-degree degenerate planar polynomial systems of codimension two;
一类余维2的高次退化平面多项式系统的极限环分布
3) codimension-two system
余维2系统
1.
In this paper we discuss the limit cycle bifurcations of codimension-two system of center sysmmetry,proves which there are at most three limit cycles and has seven different opposite positions.
讨论了关于中心对称余维2系统的极限环分支,证明了至多存在三个极限环,并有七种不同的相对位置。
4) co_dimension two bifurcation
余维2分叉
1.
For a co_dimension two bifurcation system on a three_dimensional central manifold, which is parametrically excited by a real noise, a rather general model is obtained by assuming that the real noise is an output of a linear filter system_a zeromean stationary Gaussian diffusion process which satisfies detailed balance condition.
对于三维中心流形上实噪声参激的一类余维2分叉系统,为使模型更具有一般性,取系统的参激实噪声为一线性滤波系统的输出_零均值的平稳高斯扩散过程,满足细致平衡条件· 并在此基础上首次使用Arnold的渐近方法以及Fokker_Planck算子的特征谱展式,求解不变测度以及最大的Lyapunov指数的渐近展式
5) codimension-two bifurcation
余维2分岔
1.
The codimension-two bifurcation was analyzed and the effect of each parameter on the dynamic behavior of the system mentioned above was revealed,which laid a theoretical foundation for parameter design,stable operation and fault diagnosis of a real system.
讨论了该系统的余维2分岔,揭示了各参数对机电耦合系统动力学行为的影响,对系统的参数设计、稳定运行和故障诊断提供了理论依据。
6) degenerate bifurcations of codimension two
余维2退化分叉
1.
In this paper, we use normal form theory and universal unfolding theory of the degenerate vector field to study degenerate bifurcations of codimension two in nonlinear oscillator under combined parametric and forcing excitation.
本文应用Normal Form理论和退化向量场的普适开折理论研究了参数激励与强迫激励联合作用下非线性振动系统的余维2退化分叉,用Melnikov方法讨论了全局分叉的存在性。
补充资料:余维数
余维数
codimension
余维数【“心meusi.;砚甲盯Me,扣曰压] 1)向量空间V的矛宇回(s ubspaCe)L的余维数(或亨维攀(quo‘ien‘dimension)或甲于维攀(factor dimen-sion”是商空间V/L的维数,记为“川im。L,或简记为仪心imL,它等于L在v中的正交补的维数.这些维数间有等式 dim乙+c目而L=dim犷如果M与N是V的两个有有限余维数的子空间,则M门N与M+N也有有限余维数,且 codim(M+N)+codim(M门N) =codimM+eodim N.2)微分流形M的于枣季(submanifold)N的参维攀是在:任N处切空间双(M)的切子空间兀帅的余维数.如果M与N是有限维的,则 codimN=d而M一dim拟如果M与N是微分流形,L是N的子流形,且f:M~N是横截L的可微映射,则 cod而f一’(L)=codim乙 3)代数簇(或解析空间)X的华攀琳(al罗brai“sub-varie‘y)(或解衍矛宇卿(analy‘ic subspa“))Y的参维数是差 叨dimy=d而X一dimy.【补注】向量空间V的子空间L的余维数,等于L在V中的任一补空间的维数,因为所有的这种补空间(与正交补)均有相同的维数.陈公宁译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条